精英家教网 > 高中数学 > 题目详情
对于直线L:y=kx+1是否存在这样的实数,使得L与双曲线C:3x2-y2=1的交点A,B关于直线y=ax(a为常数)对称?若存在,求k的值;若不存在,说明理由.
证明:(反证法)假设存在实数k,使得A、B关于直线y=ax对称,(1分)
设A( x1,y1),B( x2,y2),(2分)
ka=-1…(1)
y1+y2=k(x1+x2)+2…(2)
y1+y2
2
=a
x1+x2
2
…(3)
,(6分)
y=kx+1
y2=3x2-1
得(3-k2)x2-2kx-2=0,(4)(8分)
由(2)(3)有a(x1+x2)=k(x1+x2)+2,(5)(9分)
由(4)知x1+x2=
2k
3-k2
,(10分)
代入(5)整理得ak=3,与(1)矛盾,(12分)
故不存在实数k,使得A、B关于直线y=ax对称,(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E。

证明:(1)BE=EC;
(2)ADDE=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y=-x2+2x,在点A(0,0),B(2,0)分别作抛物线的切线L1、L2
(1)求切线L1和L2的方程;
(2)求抛物线C与切线L1和L2所围成的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,
ADB
为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过点B的直线l与曲线C交于M、N两点,与OD所在直线交于E点,若
EM
=λ1
MB
EN
=λ2
NB
,求证:λ1+λ2
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过抛物线y2=2px(p>0)的顶点作两条互相垂直的弦OA、OB.
(1)设OA的斜率为k,试用k表示点A、B的坐标;
(2)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆E:(x+
3
2+y2=16,点F(
3
,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)已知A,B,C是轨迹Γ的三个动点,A与B关于原点对称,且|CA|=|CB|,问△ABC的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)问是否存在满足以下两个条件的直线l:①斜率为1;②直线被圆C截得的弦为AB,以AB为直径的圆C1过原点.若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的方程为:y2=4x,直线l过(-2,1)且斜率为k≥0,当k为何值时,直线l与抛物线C(1)只有一个公共点,(2)有两个公共点.

查看答案和解析>>

同步练习册答案