精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a﹣3<x<a+3}.
(1)求A∩UB;
(2)若M∪UB=R,求实数a的取值范围.

【答案】
(1)解:∵全集U=R,集合A={x|4≤2x<128={x|22≤2x<27}={x|2≤x<7},B={x|1<x≤6},

UB={x|x≤1或x>6},

则A∩UB={x|6<x<7};


(2)解:∵UB={x|x≤1或x>6},M={x|a﹣3<x<a+3},且M∪UB=R,

解得:3<a≤4,

则实数a的范围是{a|3<a≤4}


【解析】(1)求出A中不等式的解集确定出A,找出A与B补集的交集即可;(2)根据M与B的补集并集为R,确定出a的范围即可.
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,且
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明;
(3)求函数f(x)在区间[﹣5,﹣1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是(

A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(m﹣2)ax (a>0且a≠1)是定义域为R的奇函数.
(1)求m的值;
(2)若f(1)<0,试判断y=f(x)的单调性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市积极倡导学生参与绿色环保活动其中代号为环保卫士12369的绿色环保活动小组对2014年1月2014年12月一年内空气质量指数进行监测下表是在这一年随机抽取的100天的统计结果:

指数API

[050]

50100]

100150]

150200]

200250]

250300]

>300

空气质量

轻微污染

轻度污染

中度污染

中重度污染

重度污染

天数

4

13

18

30

9

11

15

1若某市某企业每天由空气污染造成的经济损失单位:元与空气质量指数记为的关系为:在这一年内随机抽取一天估计该天经济损失元的概率;

2若本次抽取的样本数据有30天是在供暖季节其中有8天为重度污染完成列联表并判断是否有的把握认为某市本年度空气重度污染与供暖有关?

非重度污染

重度污染

合计

供暖季

非供暖季节

合计

100

下面临界值表供参考

2706

015

010

005

0025

0010

0005

0001

2072

3841

5024

6635

7879

10828

参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求v关于x的函数表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市每年中考都要举行实验操作考试和体能测试,初三(1)班共有30名学生,如图表格为该班学生的这两项成绩,表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是

实验操作

不合格

合格

良好

优秀

体能测试

不合格

0

1

1

1

合格

0

2

1

良好

1

2

4

优秀

1

1

3

6

(Ⅰ)试确定 的值;

(Ⅱ)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度单位:米),如图所示,垂直放置的标杆的高度米,已知 .

1)该班同学测得一组数据: 请据此算出的值;

2该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离单位:米),使的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数,
(1)求实数a的值;
(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;
(3)设关于x的方程f(4x﹣b)+f(﹣2x+1)=0有实数根,求实数b的取值范围.

查看答案和解析>>

同步练习册答案