精英家教网 > 高中数学 > 题目详情

【题目】

在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点依逆时针次序排列,点的极坐标为.

(1)求点的直角坐标;

(2)设上任意一点,求点到直线距离的取值范围.

【答案】(1)见解析;(2).

【解析】试题分析:

(1)由题意可得点的直角坐标点的极坐标为,直角坐标为点的极坐标为,直角坐标为.

(2)由题意可得直线的方程为利用点到直线距离公式可得点到直线距离结合三角函数的性质可得.

试题解析:

(1)由可得点的直角坐标

由已知,点的极坐标为,可得两点的直角坐标为

点的极坐标为,同理可得两点的直角坐标为.

(2)直线的方程为

设点 ,则点到直线距离

(其中),

因为,所以,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,直线的方程为

(1)求曲线的普通方程及直线的直角坐标方程;

(2)设是曲线上的任意一点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近13年的宣传费和年销售量 数据作了初步处理得到下面的散点图及一些统计量的值

由散点图知建立关于的回归方程是合理的经计算得如下数据

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根据以上信息,建立关于的回归方程

(2)已知这种产品的年利润的关系为根据(1)的结果,求当年宣传费年利润的预报值是多少

对于一组数据其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若的图像在处的切线过点,求的值并讨论上的单调增区间;

(Ⅱ)定义:若直线与曲线都相切,则我们称直线为曲线的公切线.若曲线存在公切线,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若处取到极小值,求的值及函数的单调区间;

(2)若当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;

(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数是偶函数;

(2)求函数上的最大值和最小值;

(3)若对于任意的实数恒有求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.

(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?

(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望

附:,其中

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明: .

查看答案和解析>>

同步练习册答案