精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=r2(r>0)与直线x-y+2=0相切.
(1)求圆O的方程;
(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程;
(3)设圆O与x轴的负半轴的交点为A,过点A作两条斜率分别为k1,k2的直线交圆O于B,C两点,且k1k2=-2,试证明直线BC恒过一个定点,并求出该定点坐标.

【答案】分析:(1)由圆O与直线相切,得到圆心到切线的距离等于圆的半径,列出关于r的方程,求出方程的解得到r的值,即可确定出圆的方程;
(2)分两种情况考虑:当直线l斜率不存在时,直线x=1满足题意;当直线l斜率存在时,设出直线方程,根据直线与圆相切,得到圆心到直线的距离d=r,列出关于k的方程,求出方程的解得到k的值,确定出此时直线l的方程,综上,得到满足题意直线l的方程;
(3)根据题意求出A的坐标,设出直线AB的解析式,与圆方程联立消去y得到关于x的一元二次方程,利用韦达定理表示出两根之积,将A的横坐标代入表示出B的横坐标,进而表示出B的纵坐标,确定出B坐标,由题中k1k2=-2,表示出C坐标,进而表示出直线BC的解析式,即可确定出直线BC恒过一个定点,求出定点坐标即可.
解答:解:(1)∵圆O:x2+y2=r2(r>0)与直线x-y+2=0相切,
∴圆心O到直线的距离d==2=r,
∴圆O的方程为x2+y2=4;   
(2)若直线l的斜率不存在,直线l为x=1,
此时直线l截圆所得弦长为2,符合题意;
若直线l的斜率存在,设直线为y-=k(x-1),即3kx-3y+-3k=0,
由题意知,圆心到直线的距离为d==1,解得:k=-
此时直线l为x+y-2=0,
则所求的直线为x=1或x+y-2=0;
(3)由题意知,A(-2,0),设直线AB:y=k1(x+2),
与圆方程联立得:
消去y得:(1+k12)x2+4k12x+(4k12-4)=0,
∴xA•xB=
∴xB=,yB=,即B(),
∵k1k2=-2,用代替k1得:C(),
∴直线BC方程为y-=(x-),
即y-=(x-),
整理得:y=x+=(x+),
则直线BC定点(-,0).
点评:此题考查了圆的标准方程,以及直线与圆的位置关系,涉及的知识有:韦达定理,直线的两点式方程,点到直线的距离公式,以及恒过定点的直线方程,利用了分类讨论的思想,是一道综合性较强的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案