精英家教网 > 高中数学 > 题目详情

【题目】如图,设是椭圆的左焦点,点轴上的一点,点为椭圆的左、右顶点,已知,且

(1)求椭圆的标准方程;

(2)过点作直线交椭圆于两点,试判定直线的斜率之和是否为定值,并说明理由.

【答案】(1) (2)见解析

【解析】

(1)由2a=8,a=2(ac),即可求得c的值,则b2a2c2,即可求得椭圆方程;(2)当直线斜率不存在时,kAFkBF=0,当直线l的斜率不为0,将直线方程代入椭圆方程由韦达定理及直线的斜率公式即可求得kAF+kBF=0为定值,

(1)因为,所以

又因为所以,即

所以,所以

所以椭圆的标准方程为

(2)当直线的斜率为0时,显然

当直线的斜率不为0时,可设AB方程为代入椭圆方程整理得:

,得

综上可知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an
(2)令 ,写出Tn关于n的表达式,并求满足Tn 时n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某山区养殖场散养的3500头猪中随机抽取5头,测量猪的体长x(cm)和体重y(kg),得如下测量数据:

猪编号

1

2

3

4

5

x

169

181

166

185

180

y

95

100

97

103

101


(1)当且仅当x,y满足:x≥180且y≥100时,该猪为优等品,用上述样本数据估计山区养殖场散养的3500头猪中优等品的数量;
(2)从抽取的上述5头猪中,随机抽取2头中优等品数x的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到一个奇函数,只需将函数f(x)=sin2x﹣ cos2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数g(x)=alnx,对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线相交于AB两点.

1)求证:

2)当的面积等于时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.

(1)求A,ω,φ的值;
(2)设θ为锐角,且f(θ)=﹣ ,求f(θ﹣ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P在双曲线 =1(a>0,b>0)的右支上,其左、右焦点分别为F1 , F2 , 直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2 , 则该双曲线的渐近线的斜率为

查看答案和解析>>

同步练习册答案