精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)若函数上是减函数,求实数的取值范围;

(2)是否存在整数,使得的解集恰好是,若存在,求出的值;若不存在,说明理由.

【答案】1;(2符合要求的整数.

【解析】试题分析:(1)求出函数的对称轴,由于y=|f(x)|[﹣1,0]上是减函数,则讨论区间在对称轴的右边,且f(0)不小于0,区间在对称轴的左边,且f(0)不大于0.解出它们即可;

(2)假设存在整数a,b,使得a≤fxb的解集恰好是[ab].则f(a)=a,f(b)=a,a≤fb,由f(a)=f(b)=a,解出整数a,b,再代入不等式检验即可.

试题解析:

(1)令,则.

,即时, 恒成立,

所以.

因为上是减函数,

所以,解得

所以.

,解得.

时, 的图象对称轴

且方程的两根均为正,

此时为减函数,所以符合条件.

时, 的图象对称轴

且方程的根为一正一负,

要使单调递减,则,解得.

综上可知,实数的取值范围为.

(2)假设存在整数,使的解集恰好是,则

①若函数上单调递增,则

作差得到,代回得到: ,即,由于均为整数,

,经检验均不满足要求;

②若函数上单调递减,则

作差得到,代回得到: ,即,由于均为整数,

,经检验均不满足要求;

③若函数上不单调,则

作差得到,代回得到: ,即,由于均为整数,

,,经检验均满足要求;

综上,符合要求的整数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[﹣2,2]上任意两个自变量的值x1 , x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;
(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (a>0)
(1)若函数f(x)在x=2处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)在区间[1,2]上的单调性;
(3)证明: >e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,若不等式 对任意的 恒成立,则整数λ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 直径, 所在的平面, 是圆周上不同于的动点.

(1)证明:平面平面

(2)若,且当二面角的正切值为时,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[﹣2,2]上的函数f(x)满足f(x)+f(﹣x)=0,且 ,若f(1﹣t)+f(1﹣t2)<0,则实数t的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质: ⑴对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.关于函数f(x)=(3x)* 的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(﹣∞,﹣ ),( ,+∞).
其中所有正确说法的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分16某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.

1当一次订购量为多少个时,每件商品的实际批发价为102元?

2当一次订购量为个, 每件商品的实际批发价为元,写出函数的表达式;

3根据市场调查发现,经销商一次最大定购量为个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.

查看答案和解析>>

同步练习册答案