精英家教网 > 高中数学 > 题目详情

已知函数,满足
(1)若方程有唯一的解;求实数的值;
(2)若函数在区间上不是单调函数,求实数的取值范围。

(1)(2)

解析试题分析:解(1)由知,①,又有唯一的解,故 将①式代入上式得:,,代入①得,   7分
(2)因为函数在区间上不是单调函数,所以对称轴
解得:    13分
考点:函数与方程
点评:解决的关键是利用二次函数的性质以及函数单调性来解决,属于常规试题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,其中.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若函数处取得极大值,求的值;
(2)时,函数图象上的点都在所表示的区域内,求的取值范围;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D,再回到A,设表示P点行程,表PA的长,求关于的函数关系式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求函数的单调区间和极值;
(Ⅱ)若在区间上是单调递减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值;
(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,)是上的奇函数.
(Ⅰ)求的值;(Ⅱ)讨论关于的方程的根的个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=的一个极值点
(Ⅰ)求的值;
(Ⅱ)求函数的单调增区间;
(Ⅲ)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
(1)求函数的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.

查看答案和解析>>

同步练习册答案