精英家教网 > 高中数学 > 题目详情
17.设m,n是两条不同的直线,α,β是两个不重合的平面,给出下列四个命题:
①$\left.\begin{array}{l}{m∥n}\\{m⊥α}\end{array}\right\}$⇒n⊥α;②$\left.\begin{array}{l}{α∥β}\\{m?α}\\{n?β}\end{array}\right\}$⇒m∥n;③$\left.\begin{array}{l}{α∥β}\\{m∥n}\\{m⊥α}\end{array}\right\}$⇒n⊥β;④$\left.\begin{array}{l}{m∥n}\\{m⊥α}\end{array}\right\}$⇒n∥α.
其中正确命题的序号是(  )
A.①④B.②④C.①③D.②③

分析 对四个命题分别进行判断,即可得出结论.

解答 解:根据线面垂直的性质定理可知①正确;
α∥β,γ∩α=m,γ∩β=n,则由平面与平面平行的性质,可得m∥n,正确.
∵m∥n,m⊥α,∴n⊥α,∵α∥β,∴n⊥β,故正确;
根据线面垂直的性质定理可知④,不正确.
故选:C.

点评 本题主要考查了空间中直线与直线之间的位置关系,以及空间中直线与平面之间的位置关系和平面与平面之间的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某赛事组委会要为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件.制作一等奖和二等奖奖品所用原料完全相同,但工艺不同,故价格有所差异.现有甲、乙两家工厂可以制作奖品(一等奖、二等奖奖品均符合要求),甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费交贵,其具体收费情况如表:
奖品
收费(元/件)
工厂
一等奖奖品二等奖奖品
500400
800600
求组委会定做该工艺品至少需要花费多少元钱.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象过点P($\frac{π}{12}$,0),且图象上与P点最近的一个最高点坐标为($\frac{π}{3}$,5).
(1)求函数的解析式;
(2)指出函数的增区间;
(3)若将此函数的图象向左平移m(m>0)个单位,再向下平移2个单位长度得到g(x)图象正好关于y轴对称,求m的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合A={x|x2-2x≤0},B={x|y=lg(1-x)},则A∩(∁RB)等于(  )
A.{x|0<x≤1}B.{x|0≤x<1}C.{x|1<x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A={x|1<x≤3},B={y|y=($\frac{1}{2}$)x-2,x∈A},则(∁RA)∩B=(  )
A.(0,1]B.(0,1]∪(3,+∞)C.(1,3]D.$[\frac{1}{2}{,^{\;}}1]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在(1+x)8(1-x)的展开式中,含x2项的系数为20(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在△ABC中,点D为边AC的中点,3AE=AB,BD=CE交于点P,设$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow{b}$=$\overrightarrow{AC}$
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{CE}$;
(2)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出的x值为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,已知a1=a(a>2),且an+1=$\frac{{a}_{n}^{2}}{2({a}_{n}-1)}$(n∈N*).
(1)用数学归纳法证明:an>2(n∈N*);
(2)求证an+1<an(n∈N*).

查看答案和解析>>

同步练习册答案