精英家教网 > 高中数学 > 题目详情
已知各项均为正数的两个无穷数列满足
(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;
(Ⅱ)设都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;
(Ⅲ)设,求证:
(Ⅰ);(Ⅱ)详见解析;(Ⅲ)详见解析.

试题分析:(Ⅰ)由是常数列,得,进而探求数列项间的关系;(Ⅱ)将等差数列 的通项公式代入,根据等式恒成立,求首项和公差;(Ⅲ)利用题中所给关系式对进行适当放缩,求出上界和下界.
试题解析:
(Ⅰ)因为数列是常数列,且,所以①,因此②,①-②得,,这说明数列的序号为奇数的项及序号为偶数的项均按原顺序组成公差为2的等差数列,又,所以,因此,即.
(Ⅱ)设都是公差分别为,将其通项公式代入,因为它是恒等式,所以,解得,因此.
由于可以取无穷多非零的实数,故数列有无穷多个,而数列惟一确定;
(Ⅲ)因为,且,所以,即,所以,得,因此.
又由得,,而,所以,因此
,所以,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列的各项均为正数,为其前项和,对于任意的,满足关系式
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正整数,总有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设公差为)的等差数列与公比为)的等比数列有如下关系:
(Ⅰ)求的通项公式;
(Ⅱ)记,求集合中的各元素之和。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列及其前项和满足:).
(1)证明:设是等差数列;(2)求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两点.以为圆心, 为半径作圆交轴于点(异于),记作⊙;以为圆心, 为半径作圆交轴于点(异于),记作⊙;……;以为圆心,为半径作圆交轴于点(异于),记作⊙.当时,过原点作倾斜角为的直线与⊙交于.考察下列论断:
时,;当时,;当时,;当时,           .
由以上论断推测一个一般的结论:对于                                    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为等差数列的前n项和,,则的等比中项为(    )
         B.      C.4           D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维
修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是 (   )
A.8年B.10年C.12年D.15年

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列中,已知.
(Ⅰ)求
(Ⅱ)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

公差不为0的等差数列{}的前21项的和等于前8项的和.若,则k=(     )
A.20B.21 C.22D.23

查看答案和解析>>

同步练习册答案