精英家教网 > 高中数学 > 题目详情

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

【答案】B

【解析】

根据程序框图列举出程序的每一步,即可得出输出结果.

输入不成立,是偶数成立,则

不成立,是偶数不成立,则

不成立,是偶数成立,则

不成立,是偶数成立,则

不成立,是偶数成立,则

不成立,是偶数成立,则

成立,跳出循环,输出i的值为.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2014年非洲爆发了埃博拉病毒疫情,在疫情结束后,当地防疫部门做了一项回访调查,得到如下结果,

患病

不患病

有良好卫生习惯

20

180

无良好卫生习惯

80

220

1)结合上面列联表,是否有的把握认为是否患病与卫生习惯有关?

2)现从有良好卫生习惯且不患病的180人中抽取5人,再从这5人中选两人给市民做健康专题报告,求至少有一人被选中的概率.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数fx)=2sinxsinxcosx)﹣1图象向右平移个单位得函数gx)的图象,则下列命题中正确的是(  )

A.fx)在()上单调递增

B.函数fx)的图象关于直线x对称

C.gx)=2cos2x

D.函数gx)的图象关于点(0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,,点满足.

1)证明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角ABC的对边分别为abc,且.

1)若,请判断的形状;

2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

①下面程序框图的算法思路源于我国古代数学名著《九章算术》中的更相减损术”.执行该程序框图,若输入的分别为812,则输出的

②若用样本数据0,-123来估计总体的标准差,则总体的标准差估计值为

③命题:,则的否命题是,则

④已知正数满足,则的最大值是

⑤已知函数满足,且当时,.在区间为增函数.

其中结论正确的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:存在唯一的实数,使得直线与曲线相切;

2)若,求证:.

(注:为自然对数的底数.

查看答案和解析>>

同步练习册答案