精英家教网 > 高中数学 > 题目详情
13.求满足下列条件的椭圆的标准方程.
(1)焦点在y轴上,c=6,$e=\frac{2}{3}$;
(2)短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3.

分析 (1)利用椭圆的离心率,求出a,b即可得到椭圆方程.
(2)利用已知条件列出方程,求出a,b,即可求出椭圆方程.

解答 (本题满分10分)
解:(1)焦点在y轴上,c=6,$e=\frac{2}{3}$;
可得$\frac{6}{a}$=$\frac{2}{3}$,所以a=9,则b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{45}$.
所求椭圆方程为:$\frac{y^2}{81}+\frac{x^2}{45}=1$.…(5分)
(2)解:由题意知,a=5,c=3,
所以b2=a2-c2=25-9=16,…(6分)
若焦点在x轴上,则椭圆的标准方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$,…(8分)
若焦点在y轴上,则椭圆的标准方程为$\frac{y^2}{25}+\frac{x^2}{16}=1$.…(10分)

点评 本题考查椭圆的简单性质的应用,椭圆方程的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.《九章九术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC-A1B1C1中,AC⊥BC,若A1A=AB=2,当阳马B-A1ACC1体积最大时,则堑堵ABC-A1B1C1的体积为(  )
A.$\frac{8}{3}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知空间两点A(3,3,1),B(-1,1,5),则线段AB的长度为(  )
A.6B.$2\sqrt{6}$C.$4\sqrt{3}$D.$2\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求满足下列条件的椭圆的标准方程.
(1)焦点在y轴上,c=6,$e=\frac{2}{3}$;
(2)经过点(2,0),$e=\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.阅读如图的程序框图,运行相应的程序,则输出的T的值为(  )
A.57B.120C.183D.247

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在R上的奇函数f(x)是周期为2的周期函数,当x∈[0,1)时,f(x)=2x-1,则f(log23)的值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若命题“p∧(¬q)”与“¬p”均为假命题,则(  )
A.p真q真B.p假q真C.p假q假D.p真q假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设随机变量ξ等可能取值1,2,3,4,…,n,如果p(ξ<4)=0.3,则n的值为(  )
A.3B.4C.10D.不能确定

查看答案和解析>>

同步练习册答案