精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax3+bx2+2x在x=﹣1处取得极值,且在点(1,f(1))处的切线的斜率为2. (Ⅰ)求a,b的值:
(Ⅱ)若关于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有两个不相等的实数根,求实数m的取值范围.

【答案】解:(I)∵函数f(x)=ax3+bx2+2x在x=﹣1处取得极值, ∴f'(﹣1)=3a﹣2b+2=0
又∵在点(1,f(1)处的切线的斜率为2.
f'(1)=3a+2b+2=2
解得a=﹣ ,b=
0在(1,2)内有根.(
(II)由(I)得方程f(x)+x3﹣2x2﹣x+m=0可化为:

令g(x)=
则g'(x)=2x2﹣3x+1
∵当x∈[ ,1]时,g'(x)≤0,当x∈[1,2]时,g'(x)≥0,
故g(x)= 在[ ,1]上单调递减,在[1,2]上单调递增,
若关于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有两个不相等的实数根,

解得:
【解析】(I)根据已知中函数f(x)=ax3+bx2+2x在x=﹣1处取得极值,且在点(1,f(1)处的切线的斜率为2.我们易得f'(﹣1)=0,f'(1)=2,由此构造关于a,b的方程,解方程即可得到答案.(II)根据(I)的结论我们易化简关于x的方程f(x)+x3﹣2x2﹣x+m=0,构造函数g(x)= 分析函数的单调性后,我们可将关于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有两个不相等的实数根,转化为不等式问题,解关于m的不等式组,即可求出实数m的取值范围.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值的理解,了解极值反映的是函数在某一点附近的大小情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)图象上的点(1,﹣ )处的切线斜率为﹣4,
(1)求f(x)的表达式.
(2)求y=f(x)在区间[﹣3,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=﹣2.
(1)判断f(x)的奇偶性及单调性并证明你的结论;
(2)若对任意x∈R,不等式f(ax2)﹣2f(x)<f(x)+4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.

)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;

)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线与曲线的两个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0 , y0),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3﹣3x2 , 则可求出f( )+f( )+f( )+…+f( )+f( )的值为(
A.4029
B.﹣4029
C.8058
D.﹣8058

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),满足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函数,又α、β是锐角三角形的两个内角,则(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校将高二年级某班级50位同学期中考试数学成绩(均为整数)分为7组进行统计,得到如图所示的频率分布直方图.观察图中信息,回答下列问题.

(Ⅰ)试估计该班级同学数学成绩的平均分;

(Ⅱ)先准备从该班级数学成绩不低于130分的同学中随机选出2人参加某活动,求选出的两人在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个命题,命题P:函数f(x)=(a﹣1)x+3在R上是增函数; 命题q:关于x的方程x2﹣x+a=0有实数根. 若p∧q为假命题,p∨q为真命题,求实数a的范围.

查看答案和解析>>

同步练习册答案