精英家教网 > 高中数学 > 题目详情

【题目】如图, 是正方形, 平面 .

(1)求证: 平面

(2)求证: 平面

(3)求四面体的体积.

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:(1)由题意可得 由线面垂直的判定定理可得;(2 中点 ,连结 可证 是平行四边形所以 线面平行的判定定理可得;(3)可得 平面 ,结合已知数据,代入体积公式即可得答案.

试题解析:(1)证明:因为平面, 所以.

因为是正方形, 所以

因为, 所以平面.

(2)证明:设, 取中点,连结, 所以, .

因为,所以 , 从而四边形是平行四边形, .

因为平面 平面, 所以平面,即平面.

(3)解:因为平面, 所以 ,因为正方形中, ,所以平面,因为,所以的面积为

所以四面体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)如果对于任意的 恒成立,求实数的取值范围;

(3)设函数 ,过点作函数的图象的所有切线,令各切点的横坐标按从小到大构成数列,求数列的所有项之和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2a4x﹣2x﹣1.
(1)当a=1时,求函数f(x)的零点;
(2)若f(x)有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+3x2﹣9x+3.求:
(1)f(x)的单调递增区间;
(2)f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +x在x=1处的切线方程为2x﹣y+b=0.
(1)求实数a,b的值;
(2)设函数g(x)=f(x)+ x2﹣kx,且g(x)在其定义域上存在单调递减区间(即g′(x)<0在其定义域上有解),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x;
(1)求f(x)的单调区间;
(2)求f(x)在区间[﹣3,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln 的零点一定位于区间(
A.(1,2)
B.(2,3)
C.(3,4)
D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(sinx,cosx), =(sinx,sinx),函数f(x)=
(1)求f(x)的对称轴方程;
(2)求使f(x)≥1成立的x的取值集合;
(3)若对任意实数 ,不等式f(x)﹣m<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(x+ n的展开式中的第二项和第三项的系数相等.
(1)求n的值;
(2)求展开式中所有二项式系数的和;
(3)求展开式中所有的有理项.

查看答案和解析>>

同步练习册答案