精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
a2x3 +3ax2+8x,g(x)=x3+3m2x-8m
,f(x)在x=1处的切线的斜率为-1,
(1)求f(x)的解析式及单调区间;
(2)是否总存在实数m,使得对任意的x1∈[-1,2],总存在x0∈[0,1],使得g(x0)=f(x1)成立?若存在,求出实数m的取值范围;若不存在,说明理由.
分析:(1)求导,根据f(x)在x=1处的斜率求出a的值,在根据导数判断函数的单调性,画出表格.
(2)根据(1)式求出g(x)的最大值和最小值,根据最值的范围求出m的取值范围.
解答:解:(1)解:f'(x)=a2x2+6ax+8,f'(1)=a2+6a+8=-1得a=-3,则f(x)=3x3-9x2+8x(3分)
f'(x)=9x2-18x+8=(3x-2)(3x-4)令f′(x)>0得x>
4
3
或x<
2
3
f′(x)>0得
2
3
<x<
4
3
;∴f(x)的递增区间为(-∞,
2
3
),(
4
3
,+∞)
;递减区间为(
2
3
4
3
)
(7分)
(2)由(1)得
x -1 (-1,
2
3
2
3
2
3
4
3
4
3
4
2
,2)
2
f'(x) + 0 - 0 +
f(x) -20
20
9
16
9
4
所以当x1∈[-1,2]时,-20≤f(x1)≤4,(9分)
假设对任意的都存在x1∈[-1,2]x0∈[0,1]使得g(x0)=f(x1)成立,
设g(x0)的最大值为T,最小值为t,则
T≥4
t≤20
(11分)
又g′(x)=9x2+3m2>0,所以当x0∈[0,1]时,
T=g(1)=1+3m2-8m≥4且t=g(0)=-8m≤-20,所以m≥3.(15分)
点评:该题考查函数的求导,以及导数的几何意义,在解答过程中要注意画表格.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案