精英家教网 > 高中数学 > 题目详情

如图,正三棱锥O﹣ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.

解析试题分析:∵O﹣ABC是正三棱锥,其底面三角形ABC是边长为2的正三角形,其面积为
∴该三棱锥的体积==
设O′是正三角形ABC的中心,则OO′⊥平面ABC,延长AO′交BC于D.
则AD=,O′D=,又OO′=1,∴三棱锥的斜高OD=
∴三棱锥的侧面积为×=2
∴该三棱锥的表面积为

考点:棱柱、棱锥、棱台的体积
点评:本题考查三棱锥的体积、表面积的求法,解题时要认真审题,注意合理地化立体问题为平面问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体中,是线段的中点.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.
(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;
(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,四条侧棱长均相等.

(1)求证:平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱锥中,平面分别是的中点,交于交于点,连接

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面平面. 过点,垂足为,点分别为棱的中点.

求证:(1)平面平面
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,都是边长为的等边三角形.

(I)证明:
(II)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知长方形ABCD中,AB=2,A1,B1分别是AD,BC边上的点,且AA1=BB1="1," E,F分别为B1D与AB的中点. 把长方形ABCD沿直线折成直角二面角,且.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=

(1)当时,求证:AO⊥平面BCD;
(2)当二面角的大小为时,求二面角的正切值.

查看答案和解析>>

同步练习册答案