【题目】已知函数的图象经过点(1,1),.
(1)求函数的解析式;
(2)判断函数在(0,+)上的单调性并用定义证明;
(3)求在区间上的值域;
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与轴非负半轴重合,直线的参数方程为:
为参数),曲线的极坐标方程为:.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)设直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作的切线交椭圆于两点,问:的周长是否为定值?若是,求出定值;若不是。说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xln x.
(1)求函数f(x)的极值点;
(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从遂宁市中、小学生中抽取部分学生,进行肺活量调查.经了解,我市小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是
A. 简单的随机抽样 B. 按性别分层抽样
C. 按学段分层抽样 D. 系统抽样
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有6个红球和5个白球的口袋中任取4个球,那么下列是互斥而不对立的事件是( )
A. 至少一个红球与都是红球
B. 至少一个红球与至少一个白球
C. 至少一个红球与都是白球
D. 恰有一个红球与恰有两个红球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在区间上,若函数为增函数,而函数为减函数,则称函数为区间上的“弱增”函数.则下列函数中,在区间上不是“弱增”函数的为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com