精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)是否存在k∈N*,使得
S1
1
+
S2
2
+…+
Sn
n
<k对任意n∈N*恒成立,若存在,求出k的最小值,若不存在,请说明理由.
分析:(1)根据等比数列的性质可知a1a5=a32,a2a8=a52化简a1a5+2a3a5+a2a8=25得到a3+a5=5,又因为a3与a5的等比中项为2,联立求得a3与a5的值,求出公比和首项即可得到数列的通项公式;
(2)把an代入到bn=
log
an
2
中得到bn的通项公式,即可得到前n项和的通项sn
(3)把sn代入得到
sn
n
,讨论求出
sn
n
各项和的最大值,即可求出k的取值范围.
解答:解:(1)∵a1a5+2a3a5+a2a8=25,
∴a32+2a3a5+a52=25,
∴(a3+a52=25,
又an>0,∴a3+a5=5,
又a3与a5的等比中项为2,
∴a3a5=4.
而q∈(0,1),
∴a3>a5,∴a3=4,a5=1,
∴q=
1
2
,a1=16,∴an=16×(
1
2
n-1=25-n
(2)∵bn=log2an=5-n,∴bn+1-bn=-1,
b1=log2a1=log216=log224=4,
∴{bn}是以b1=4为首项,-1为公差的等差数列,
∴Sn=
n(9-n)
2

(3)由(2)知Sn=
n(9-n)
2
,∴
Sn
n
=
9-n
2

当n≤8时,
Sn
n
>0;当n=9时,
Sn
n
=0;
当n>9时,
Sn
n
<0.
∴当n=8或9时,
S1
1
+
S2
2
+
S3
3
++
Sn
n
=18最大.
故存在k∈N*,使得
S1
1
+
S2
2
++
Sn
n
<k对任意n∈N*恒成立,k的最小值为19.
点评:考查学生灵活运用等比数列性质的能力,掌握等比数列的通项公式,会进行数列的求和,理解函数恒成立时所取的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案