精英家教网 > 高中数学 > 题目详情
15.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为A=B.

分析 根据已知分析两个集合中元素的性质,可得结论.

解答 解:A={x|x=4k+1,k∈Z}表示所有比4的整数倍大1的整数,
B={x|x=4k-3,k∈Z}也表示所有比4的整数倍大1的整数,
故A=B,
故答案为:A=B

点评 本题考查的知识点是集合相等的概念,正确理解两个集合中元素满足的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(Ⅰ)求tanC的值;
(Ⅱ)若b=3,求△ABC的面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x}{2x+1}$,若数列{an}(n∈N*)满足:a1=1,an+1=f(an
(1)证明数列$\{\frac{1}{a_n}\}$为等差数列,并求数列{an}的通项公式;
(2)设数列{cn}满足:cn=$\frac{3^n}{a_n}$,求数列{cn}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,AB=AC,D为BC边上一点,E为AD上一点,且满足∠BDE=2∠CED=∠BAC.求证:BD=2CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一个周期的正弦型曲线如图所示,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在正方体AC1中,A1E1=CE,A1F1=CF.求证:E1F1$\underset{∥}{=}$EF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各组函数表示同一函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x0
C.f(x)=2x-1,f(t)=2t-1D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象如图,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出封闭函数的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.若定义域D=(0,1),则函数①f1(x)=3x-1;②f2(x)=-$\frac{1}{2}$x2-$\frac{1}{2}$x+1;③f3(x)=1-x;④f4(x)=${x}^{\frac{1}{2}}$,其中在D上封闭的是②③④.(填序号即可)

查看答案和解析>>

同步练习册答案