精英家教网 > 高中数学 > 题目详情
7.直线mx-y-m+2=0恒过定点A,若直线l过点A且与2x+y-2=0平行,则直线l的方程为(  )
A.2x+y-4=0B.2x+y+4=0C.x-2y+3=0D.x-2y-3=0

分析 求出A的坐标,求出直线l的斜率,从而求出直线l的方程即可.

解答 解:由mx-y-m+2=0,得:y-2=m(x-1),
故直线mx-y-m+2=0恒过定点A(1,2),
直线2x+y-2=0的斜率是:k=-2,
故直线l的方程是:y-2=-2(x-1),
整理得:2x+y-4=0,
故选:A.

点评 本题考查了求直线方程问题,考查直线的平行关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6位选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图.为了增加结果的神秘感,主持人暂时没有公布甲、乙两班最好一位选手的成绩.
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.请你从平均分和方差的角度来分析两个班的选手的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知两个命题p:?x∈R,sinx+cosx>m恒成立,q:?x∈R,y=(2m2-m)x为增函数.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,两个顶点分别为A(-a,0),B(a,0),点M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,且点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线BC,BD的斜率分别为k1,k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α是三角形的内角,且sinα+cosα=$\frac{1}{5}$.
(1)求cos2α的值;
(2)把$\frac{1}{sinα•cosα}$用tanα表示出来,并求其值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}
(1)若B=∅,求m的取值范围;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E为PC中点.求二面角E-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法中,正确的是(  )
A.经过不同的三点有且只有一个平面
B.分别在两个平面内的两条直线是异面直线
C.垂直于同一个平面的两条直线平行
D.垂直于同一个平面的两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列{an}中,a1=2,a5=a4+2,则a3=(  )
A.4B.10C.8D.6

查看答案和解析>>

同步练习册答案