精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足 ,( N*).

(Ⅰ)写出的值;

(Ⅱ)设,求的通项公式;

(Ⅲ)记数列的前项和为,求数列的前项和的最小值.

【答案】;(;.

【解析】试题分析:根据递推关系式写出前六项即可(Ⅱ)利用等差数列定义证明是等差数列,并写出其通项公式;(Ⅲ)根据等差数列的性质写出再证出是等比数列写出通项公式可知当时项是非正的从而得其最小值.

试题解析:

所以是以1为首项,2为公差的等差数列,所以.

解法1:

所以是以1为首项, 为公差的等差数列,所以数列的前n个奇数项之和为可知,

所以数列的前n个偶数项之和为.

所以,所以.

因为,且

所以数列是以为首项, 为公差的等差数列.

可得

所以当时,数列的前项和的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的有 . (填上所有正确命题的序号) ①一质点在直线上以速度v=3t2﹣2t﹣1(m/s)运动,从时刻t=0(s)到t=3(s)时质点运动的路程为15(m);
②若x∈(0,π),则sinx<x;
③若f′(x0)=0,则函数y=f(x)在x=x0取得极值;
④已知函数 ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx+λcosωx,其图象的一个对称中心到最近的一条对称轴的距离为 ,且在x= 处取得最大值.
(1)求λ的值.
(2)设 在区间 上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a<0,q:实数x满足x2﹣x﹣6≤0或x2+2x﹣8>0,且非p是非q的必要不充分条件,则实数a的范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A则实数b的取值范围是(
A.b≠0
B.b<0或b≥4
C.0≤b<4
D.b≤4或b≥4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的倾斜角为且经过点以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线的极坐标方程为.

1)若直线与曲线有公共点,求的取值范围;

(2)设为曲线上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广东某市一玩具厂生产一种玩具深受大家喜欢,经市场调查该商品每月的销售量(单位:千件)与销售价格(单位:元/件)满足关系式,其中 为常数已知销售价格为4/件时,每日可售出玩具21千件.

1的值

2假设该厂生产这种玩具的成本、员工工资等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格的值,使该厂每日销售这种玩具所获得的利润最大(保留1位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)如图,在四棱锥中, 平面,底面是菱形, 的交点, 上任意一点.

1)证明:平面平面

2)若平面,并且二面角的大小为,求的值.

查看答案和解析>>

同步练习册答案