精英家教网 > 高中数学 > 题目详情
9.如图.在正三棱柱ABC-A1B1C1中,点D在棱BC上,AD⊥C1D.
(1)求证:平面C1AD⊥平面B1BCC1
(2)求证:A1B∥平面C1AD.

分析 (1)推导出AD⊥C1D,AD⊥CC1,由此能证明平面C1AD⊥平面B1BCC1
(2)连结A1C,交AC1于O,连结OD,推导出OD∥A1B,由此能证明A1B∥平面C1AD.

解答 证明:(1)∵在正三棱柱ABC-A1B1C1中,点D在棱BC上,
AD⊥C1D,AD⊥CC1,C1D∩CC1=C1
∴AD⊥平面B1BCC1
∵AD?平面C1AD,
∴平面C1AD⊥平面B1BCC1
(2)连结A1C,交AC1于O,连结OD,
∵正三棱柱ABC-A1B1C1中,点D在棱BC上,AD⊥C1D.
平面C1AD⊥平面B1BCC1
∴D是BC中点,O是A1C中点,
∴OD∥A1B,
∵A1B?平面C1AD,OD?平面C1AD,
∴A1B∥平面C1AD.

点评 本题考查面面垂直和线面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若sinα<0,cosα<0,则α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x-1)>f(x+2)的解集为($\frac{1}{3}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆$A:{(x+\sqrt{2})^2}+{y^2}=12$,圆A内一定点$B(\sqrt{2},0)$,圆P过点B且与圆A内切.
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若直线y=kx+2与点P的轨迹交于C,D两点.问是否存在常数k,使得以CD为直径的圆过坐标原点O,若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow a=(cos{23°},cos{67°}),\overrightarrow b=(cos{53°},cos{37°})$,则$\overrightarrow a•\overrightarrow b$=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的离心率是(  )
A.2B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个算法,其流程图如图所示,则输出结果是(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个正方体的棱长为2cm,它的顶点都在一个球面上,则球的半径是(  )cm.
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平行四边形ABCD中,$\overrightarrow{AC}•\overrightarrow{CB}=0$,$2{\overrightarrow{BC}^2}+{\overrightarrow{AC}^2}-4=0$,若将其沿AC折成直二面角D-AC-B,则三棱锥D-ACB的外接球的表面积为(  )
A.16πB.C.D.

查看答案和解析>>

同步练习册答案