【题目】实验中学在教工活动中心举办了一场台球比赛,为了节约时间比赛采取“3局2胜制”.现有甲、乙二人,已知每局甲胜的概率为0.6,乙胜的概率为0.4.求:
(1)这场比赛甲获胜的概率;
(2)这场比赛乙所胜局数的数学期望.
(3)这场比赛在甲获得比赛胜利的条件下,乙有一局获胜的概率.
科目:高中数学 来源: 题型:
【题目】已知双曲线的左右焦点为为它的中心,为双曲线右支上的一点,的内切圆圆心为,且圆与轴相切于点,过作直线的垂线,垂足为,若双曲线的离心率为,则( )
A.B.C.D.与关系不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合是由一些函数组成,满足如下性质:①对任意,均存在反函数,且;②对任意,方程均有解;③对任意、,若函数为定义在上的一次函数,则.
(1)若,,均在集合中,求证:函数;
(2)若函数()在集合中,求实数的取值范围;
(3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”项目分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:
研学游类型 | 科技体验游 | 民俗人文游 | 自然风光游 |
学校数 | 40 | 40 | 20 |
该实习生在明年省内有意向组织高一“研学游”学校中,随机抽取了3所学校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响):
(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;
(2)设这3所学校中选择“科技体验游”学校数为随机变量X,求X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆()的左右焦点分别为,椭圆的上顶点为点,点为椭圆上一点,且.
(1)求椭圆的离心率;
(2)若,过点的直线交椭圆于两点,求线段的中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系O-xyz中,已知正四棱锥PABCD的高OP=2,点B,D和C,A分别在x轴和y轴上,且AB= ,点M是棱PC的中点.
(1)求直线AM与平面PAB所成角的正弦值;
(2)求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若、两点分别在函数与的图像上,且关于直线对称,则称、是与的一对“伴点”(、与、视为相同的一对).已知,,若与存在两对“伴点”,则实数的取值范围为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有下列四个结论,其中所有正确结论的编号是___________.
①若,则的最大值为;
②若,,是等差数列的前项,则;
③“”的一个必要不充分条件是“”;
④“,”的否定为“,”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com