精英家教网 > 高中数学 > 题目详情

【题目】某市今年出现百年不遇的旱情,广大市民自觉地节约用水.市自来水厂观察某蓄水池供水情况以制定节水措施,发现某蓄水池中有水450吨,水厂每小时可向蓄水池中注水80吨,同时蓄水池又向居民小区供水,t小时内供水量为吨,现在开始向水池注水并向居民小区供水.

(1)请将蓄水池中存水量S表示为时间t的函数;

(2)问开始蓄水后几小时存水量最少?

(3)若蓄水池中水量少于150吨时,就会出现供水量紧张现象,问每天有几小时供水紧张?

【答案】(1);(2)小时;(3)小时.

【解析】

(1)可根据题意,用原来就有的存水加上注入的水减去供水即可得出蓄水池中存水量表示为时间的函数;

(2)令,然后通过对进行配方得出最小值;

(3)令解出的取值范围,再通过解出的取值范围,最后得出结果。

(1)设小时后水池中存水量为吨,则

(2)设,则,则,所以供水小时,水池中水量最少只有吨;

(3)令,解得,所以所以有小时供水紧张。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】网格纸的各小格都是边长为1的正方形,图中粗实线画出的是一个几何体的三视图,其中正视图是正三角形,则该几何体的外接球表面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面为平行四边形,MPC中点.

(1)求证:BA平面PCD

(2)求证:AP平面MBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于 两点.若直线斜率为 时, .

(1)求椭圆的标准方程;

(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)的定义域是,对任意

时,.关于函数给出下列四个命题:

①函数是奇函数;

②函数是周期函数;

③函数的全部零点为

④当时,函数的图象与函数的图象有且只有三个公共点.

其中真命题的个数为

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正数 满足 ,则 的最小值为( )

A. B. C. D.

【答案】A

【解析】正数 满足,

故答案为:A.

点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中。

型】单选题
束】
12

【题目】已知数列 为等差数列,若 ,且它的前 项和 有最大值,则使得 的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别是椭圆 的左、右焦点F1 , F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.
(1)求圆C的方程;
(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足,则称函数为“函数”.

试判断是否为“函数”,并说明理由;

函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;

条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=
(1)当m=4时,求函数f(x)的定义域M;
(2)当a,b∈RM时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

同步练习册答案