精英家教网 > 高中数学 > 题目详情
(2013•未央区三模)若向量
a
=(cosθ,sinθ),
b
=(
3
,-1)
,则
.
a
-
b
.
的最大值为
3
3
分析:先求得 
a
-
b
=(cosθ-
3
,sinθ+1),|
a
|=1,|
b
|=2,
a
b
=
3
cosθ-sinθ.化简 (
a
-
b
)
2
=5-4sin(θ+
π
3
),可得(
a
-
b
)
2
的最大值为9,从而得到
.
a
-
b
 
  
.
的最大值.
解答:解:向量
a
=(cosθ,sinθ),
b
=(
3
,-1)

a
-
b
=(cosθ-
3
,sinθ+1),|
a
|=1,|
b
|=2,
a
b
=
3
cosθ-sinθ.
(
a
-
b
)
2
=
a
2
-2
a
b
+
b
2
=1-2
3
cosθ+2sinθ+4=5-2(
3
cosθ-sinθ)=5-4sin(θ+
π
3
),
(
a
-
b
)
2
的最大值为9,故
.
a
-
b
 
  
.
 最大值为3,
故答案为3.
点评:本题主要考查两个向量的数量积的定义,两个向量的数量积公式的应用,求向量的模,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•未央区三模)如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)证明:平面BDE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)连掷两次骰子得到的点数分别为m和n,若记向量
a
=(m,n)与向量
b
=(1,-2)
的夹角为θ,则θ为锐角的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)某三棱锥的三视图如图所示,该三棱锥的体积是为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)在数列{an}中,a1=
2
3
,且对任意的n∈N+都有an+1=
2an
an+1

(Ⅰ)求证:{
1
an
-1}
是等比数列;
(Ⅱ)若对于任意n∈N+都有an+1<pan,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)若复数Z满足Z=(Z-1)-i,则复数Z的模为(  )

查看答案和解析>>

同步练习册答案