精英家教网 > 高中数学 > 题目详情
已知左右焦点分别为F1,F2的椭圆上存在一点P使PF1⊥PF2,直线PF2交椭圆的右准线于M,则线段PM的长为( )
A.2a
B.2b
C.2c
D.
【答案】分析:利用椭圆的定义,PF1⊥PF2,可求PF1PF2=2b2,利用三角形PF1F2和三角形EMF2相似,可知 PF1=F2M,从而可求.
解答:解:由椭圆定义得PF1+PF2=2a,由PF1⊥PF2,F1F2=2c,
得(PF12+(PF22=4c2
所以(PF1+PF22=4a2
即4c2+2PF1PF2=4a2
即PF1PF2=2b2
设右准线与x轴交于E点,三角形PF1F2和三角形EMF2相似,
所以PF2F2M=F1F2FE=2c[-c]=2b2=PF1PF2
所以 PF1=F2M
∴PM=PF2+F2M=PF2+PF1=2a
故选A.
点评:本题以椭圆为载体,考查直线与椭圆的位置关系,考查椭圆的定义,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2

(1)若圆(x-2)2+(y-1)2=
20
3
与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆的方程;
(2)设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为60°.求
|MF|
|NF|
的值.
(3)在(1)的条件下,椭圆W的左右焦点分别为F1、F2,点R在直线l:x-
3
y+8=0上.当∠F1RF2取最大值时,求
|RF1|
|RF2|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x24
+y2=1的左右焦点分别为F1,F2,过F的值线l交椭圆C于A、B两点,过F2且平行于l的直线l1交椭圆C与M、N两点.
(1)求△ABF2的周长;
(2)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州中学高二上学期期中考试数学 题型:解答题

(本题满分16分)已知椭圆的离心率为.
⑴若圆(x-2)2+(y-1)2=与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆W方程;
⑵设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600.求的值.
⑶在(1)的条件下,椭圆W的左右焦点分别为F1、 F2,点R在直线l:x-y+8=0上.当∠F1RF2取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高二上学期期中考试数学 题型:解答题

(本题满分16分)已知椭圆的离心率为.

⑴若圆(x-2)2+(y-1)2=与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆W方程;

⑵设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600.求的值.

⑶在(1)的条件下,椭圆W的左右焦点分别为F1、 F2,点R在直线l:x-y+8=0上.当∠F1RF2取最大值时,求的值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式的离心率为数学公式
(1)若圆(x-2)2+(y-1)2=数学公式与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆的方程;
(2)设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为60°.求数学公式的值.
(3)在(1)的条件下,椭圆W的左右焦点分别为F1、F2,点R在直线l:x-数学公式y+8=0上.当∠F1RF2取最大值时,求数学公式的值.

查看答案和解析>>

同步练习册答案