分析 (1)(2)由ax=by=2,得到x=loga2,y=logb2代入代数式求出即可.
解答 解:(1)∵ax=by=2,所以x=loga2,y=logb2,
∴$\frac{1}{x}$+$\frac{1}{y}$=$\frac{1}{{log}_{a}^{2}}$+$\frac{1}{{log}_{b}^{2}}$=${log}_{2}^{a}$+${log}_{2}^{b}$=${log}_{2}^{ab}$=${log}_{2}^{4}$=2;
(2)$\frac{2}{x}$+$\frac{1}{y}$=$\frac{2}{{log}_{a}^{2}}$+$\frac{1}{{log}_{b}^{2}}$=2${log}_{2}^{a}$+${log}_{2}^{b}$=${log}_{2}^{{a}^{2}+b}$=${log}_{2}^{4}$=2,
故答案为:2,2.
点评 本题考查了对数函数的性质,由ax=by=2,得到x=loga2,y=logb2是解题的关键,本题是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-2y+4=0 | B. | x-2y+4=0或y=2 | ||
C. | x-2y+4=0或x=0 | D. | x-2y+4=0或y=2或x=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{9}$ | B. | -$\frac{7}{9}$ | C. | $\frac{1}{9}$ | D. | -$\frac{1}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com