精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,△PCD为等边三角形,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=$\sqrt{3}$,点E、F分别为AD、CD的中点.
(1)求证:直线BE∥平面PCD;
(2)求证:平面PAF⊥平面PCD;
(3)若PB=$\sqrt{3}$,求直线PB与平面PAF所成的角.

分析 (1)推导出四边形BCDE是平行四边形,从而BE∥CD,由此能证明直线BE∥平面PCD.
(2)推导出CD⊥PF,AB⊥BC,CD⊥AF,从而CD⊥平面PAF,由此能证明平面PAF⊥平面PCD.
(3)设AF与BE交于点G,连结PG,则∠BPG为直线BP与平面PAF所成的角,由此能求出直线PB与平面PAF所成的角.

解答 (本小题满分13分)
证明:(1)∵AD=2BC=2,且E为AD的中点,∴BC=ED.
又因为AD∥BC,则四边形BCDE是平行四边形,∴BE∥CD,
∵CD?平面PCD,BE?平面PCD,
∴直线BE∥平面PCD.…(4分)
(2)∵在等边△PCD中,F是CD的中点,∴CD⊥PF,
又BC∥AD,AB⊥AD,∴AB⊥BC,
又$AB=\sqrt{3},BC=1$,∴AC=2,
又AD=2,∴CD⊥AF,又∵PF∩AF=F,∴CD⊥平面PAF,
故平面PAF⊥平面PCD.…(8分)
解:(3)设AF与BE交于点G,
由(2)知CD⊥平面PAF,BE∥CD,
故BG⊥平面PAF,连结PG,
则∠BPG为直线BP与平面PAF所成的角.
在Rt△PBG中,$BG=\frac{3}{2}$,$sin∠BPG=\frac{BG}{PB}=\frac{{\frac{3}{2}}}{{\sqrt{3}}}=\frac{{\sqrt{3}}}{2}$,
∴$∠BPG=\frac{π}{3}$.
∴直线PB与平面PAF所成的角$\frac{π}{3}$.…(13分)

点评 本题考查面面平行的证明,考查面面垂直的证明,考查线面角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.过点A(3,5)作圆(x-2)2+(y-3)2=1的切线,则切线的方程为(  )
A.x=3或3x+4y-29=0B.y=3或3x+4y-29=0C.x=3或3x-4y+11=0D.y=3或3x-4y+11=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=(x2-3)ex(其中x∈R,e是自然对数的底数),当t1>0时,关于x的方程[f(x)-t1][f(x)-t2]=0恰好有5个实数根,则实数t2的取值范围是(  )
A.(-2e,0)B.(-2e,0]C.[-2e,6e-3]D.(-2e,6e-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$a={log_3}0.5,b={log_{0.3}}0.2,c={0.5^{0.3}}$,则(  )
A.a>c>bB.b>c>aC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等比数列{an}中,已知${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$,则{an}的前10项和S10=$\frac{1023}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-5x-6≤0,命题q:x2-2x+1-4a2≤0(a>0),若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当k=1时,求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}中,a2+a4=20,a3+a5=40,则a6=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2-4m-14n+45=0,求k=$\frac{n-3}{m+2}$的最大值和最小值.

查看答案和解析>>

同步练习册答案