精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱中,平面,底面是矩形,为棱的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的余弦值.

【答案】12

【解析】

1)建立空间直角坐标系,算出和平面的法向量的坐标,然后向量夹角公式可算出答案;

2)算出平面的法向量的坐标,然后利用向量夹角公式可算出答案.

由题意知,四棱柱是直四棱柱,以为坐标原点,的方向分别为轴、轴、轴的正方向建立如图所示的空间直角坐标系,

所以

.

1)设平面的法向量为

所以

,则,所以为平面的一个法向量,

所以直线与平面所成角的正弦值为.

2)设平面的法向量为

,则,所以为平面的一个法向量.

由图象可知,二面角为锐二面角,

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的导数为

1)若不等式对任意恒成立,求实数的取值范围.

2)若上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若处的切线为

(Ⅰ)求实数的值;

(Ⅱ)若不等式对任意恒成立,求的取值范围;

(Ⅲ)设其中,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,D,E分别是的中点.

(1)求证:DE∥平面

(2)若,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知项数为的数列满足条件:①;②;若数列满足,则称为数列关联数列.

1)数列1591317是否存在关联数列?若存在,写出其关联数列,若不存在,请说明理由;

2)若数列存在关联数列,证明:

3)已知数列存在关联数列,且,求数列项数m的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆台的轴截面为等腰梯形,圆台的侧面积为.若点CD分别为圆上的动点且点CD在平面的同侧.

1)求证:

2)若,则当三棱锥的体积取最大值时,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知轴上的动点(异于原点),点在圆上,且.设线段的中点为,当点移动时,记点的轨迹为曲线.

1)求曲线的方程;

2)当直线与圆相切于点,且点在第一象限.

)求直线的斜率;

)直线平行,交曲线于不同的两点.线段的中点为,直线与曲线交于两点,证明:.

查看答案和解析>>

同步练习册答案