【题目】在平面直角坐标系中,直线:(为参数,),曲线:(为参数),与相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求的极坐标方程及点的极坐标;
(2)已知直线:与圆:交于,两点,记的面积为,的面积为,求的值.
科目:高中数学 来源: 题型:
【题目】下列对各事件发生的概率判断正确的是( )
A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为
B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为
C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为
D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,
(1)当时,求函数的单调递增与单调递减区间(直接写结果);
(2)当时,函数在区间上的最大值为,试求实数m的取值范围;
(3)若不等式对任意,恒成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一张长为80cm、宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面正方形边长为x(cm),高为y(cm),体积为V(cm3).求:
(1)y关于x的表达式;
(2)该铁皮盒体积V的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:
(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;
(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
①先从收入在及的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,随机变量,求的分布列与数学期望;
②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解本市的交通状况,某校高一年级的同学分成了甲、乙、丙三个组,从下午13点到18点,分别对三个路口的机动车通行情况进行了实际调查,并绘制了频率分布直方图(如图),记甲、乙、丙三个组所调查数据的标准差分别为,则它们的大小关系为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级有50名学生,其中有30名男生和20名女生,随机询问了该班5名男生和5名女生在某次数学测验中的成绩,5名男生的成绩分别为86,94,88,92,90,5名女生的成绩分别为88,93,93,88,93.
①这种抽样方法是一种分层随机抽样;
②这5名男生成绩的方差大于这5名女生成绩的方差;
③该班男生成绩的平均数小于该班女生成绩的平均数.
则以上说法一定正确的是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从地出发匀速前往D地,甲的路线是AD,速度为6千米/小时,乙的路线是ABCD,速度为v千米/小时.
(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;
(2)已知对讲机有效通话的最大距离是5千米.若乙先到达D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com