精英家教网 > 高中数学 > 题目详情

【题目】某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].图(1)为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人. (Ⅰ)请补充完整频率分布直方图,并估计这组数据的平均数M;

(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2
列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学
成为种子选手与专家培训有关”.

[140,150]

合计

参加培训

5

8

未参加培训

合计

4

附:

P(K2≥k0

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】解:(Ⅰ)设第四,五组的频率分别为x,y,则2y=x+0.005×10① x+y=1﹣(0.005+0.015+0.02+0.035)×10②
由①②解得x=0.15,y=0.10
从而得出直方图(如图所示)

M=95×0.2+105×0.15+115×0.35+125×0.15+135×0.1+145×0.05=114.5
(Ⅱ)依题意,进入决赛人数为 ,进而填写列联表如下:

[120,140)

[140,150]

合计

参加培训

5

3

8

未参加培训

15

1

16

合计

20

4

24

又由 ,故没有99%的把握认为“进入决赛的同学成为种子选手与专家培训有关
【解析】(Ⅰ)根据所给的频率分步直方图,列出关于x,y的方程,联立方程,得到方程组,解方程组得到要求的频率,补充完整频率分步直方图,求出M的值.(Ⅱ)做粗话进入决赛的人数,得到列联表的各个位置的数据,填上列联表,根据列联表中的数据,根据条件中所给的观测值的公式做出观测值,得到没有99%的把握认为“进入决赛的同学成为种子选手与专家培训有关.
【考点精析】认真审题,首先需要了解频率分布直方图(频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=(log2x)2﹣2alog2x+b(x>0).当x= 时,f(x)有最小值﹣1.
(1)求a与b的值;
(2)求满足f(x)<0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方造一千多年,例如堑堵指底面为直角三角形,且测量垂直底面的三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,如图,在堑堵中,,若当阳马的体积最大时,则堑堵的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线上一动点,过点作圆的切线

(1)当的横坐标为2时,求切线方程;

(2)求证:经过三点的圆必过定点,并求此定点的坐标;

(3)当线段长度最小时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求B点到平面PCD的距离;

(2)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1若不等式的解集为,求实数的值;

2解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求证:

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且S3=9,a1 , a3 , a7成等比数列.
(1)求数列{an}的通项公式;
(2)若an≠a1时,数列{bn}满足bn=2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y= x2的焦点,离心率等于
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若 1 ,求证:λ12为定值.

查看答案和解析>>

同步练习册答案