精英家教网 > 高中数学 > 题目详情
甲、乙、丙3位教师安排在周一至周五中的3天值班,要求每人值班1天且每天至多安排1人,则恰好甲安排在另外两位教师前面值班的概率是(  )
A、
1
3
B、
2
3
C、
3
4
D、
3
5
考点:古典概型及其概率计算公式
专题:概率与统计
分析:根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.
解答: 解:根据题意,
甲、乙、丙3位教师安排在周一至周五中的3天值班的安排方法共有
A
3
5
=60

要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;
分3种情况讨论可得,
甲在星期一有A42=12种安排方法,
甲在星期二有A32=6种安排方法,
甲在星期三有A22=2种安排方法,
总共有12+6+2=20种.
∴恰好甲安排在另外两位教师前面值班的概率是
20
60
=
1
3

故选:A.
点评:本题考查排列、组合的综合应用,古典概型的计算公式,涉及分类讨论的思想,注意按一定的顺序分类,做到不重不漏.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下四个命题,其中所有正确命题的序号为:
 

①已知等差数列{an}的前n项和为Sn
OA
OB
为不共线向量,又
OP
=a1
OA
+a2014
OB
,若A、B、P三点共线,则S2014=1007;
②“a=
1
0
1-x2
dx
”是“函数y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
③设函数f(x)=
2014x+1+2013
2014x+1
+2014sinx(x∈[-
π
2
π
2
])
的最大值为M,最小值为m,则M+m=4027;
④已知函数f(x)=|x2-2|,若f(a)=f(b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中真命题是(  )
A、命题“存在x∈R,x2-x-2≥0”的否定是:“不存在x∈R,x2-x-2<0”
B、线性回归直线
y
=
b
x+
a
恒过样本中心(
.
x
.
y
),且至少过一个样本点
C、存在x∈(0,
π
2
),使sinx+cosx=
1
3
D、函数f(x)=x
1
3
-(
1
2
x的零点在区间(
1
3
1
2
)内

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、命题“若am2<bm2,则a<b”的逆命题是真命题
B、已知x∈R,则“x>1”是“x>2”的充分不必要条件
C、命题“p∨q”为真命题,则“命题p”和“命题q”均为真命题
D、已知x∈R,则“x2-2x-3=0”是“x=3”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法不正确的是(  )
A、方程f(x)=0有实数根?函数y=f(x)有零点
B、函数y=-x2+3x+5有两个零点
C、单调函数至多有一个零点
D、函数f(x)在区间[a,b]上满足f(a)•f(b)<0,则函数f(x)在区间(a,b)内有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线y2=2px(p>0)的焦点F的两条互相垂直的直线与抛物线分别交于点A、B和C、D;抛物线上的点T(2,t)(t>0)到焦点的距离为3.
(1)求p、t的值;
(2)当四边形ACBD的面积取得最小值时,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点F(
2
2
)及直线l:x+y-
2
=0,曲线C1是满足下列两个条件的动点P(x,y)的轨迹:①|PF|=
2
d其中d是P到直线l的距离;②
x>0
y>0
2x+2y<5

(1)求曲线C1的方程;
(2)若存在直线m与曲线C1、椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)均相切于同一点,求椭圆C2离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋中装有大小形状完全相同的n+3个乒乓球,其中1个乒乓球上标有数字1,2个乒乓球上标有数字2,其余n个乒乓球上均标有数字3(n∈N*),若从这个口袋中随机地摸出2个乒乓球,恰有一个乒乓球上标有数字2的概率是
8
15

(1)求n的值;
(2)从口袋中随机地摸出2个乒乓球,设ξ表示所摸到的2个乒乓球上所标数字之积,求ξ的分布列和数学期望Eξ

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=2x4上的点到直线x+y+1=0的距离的最小值为
 

查看答案和解析>>

同步练习册答案