精英家教网 > 高中数学 > 题目详情
已知椭圆的右焦点为点在椭圆上,以点为圆心的圆与轴相切,且同时与轴相切于椭圆的右焦点,则椭圆的离心率为         

试题分析:根据题意可知,椭圆的右焦点为点在椭圆上,由于以点为圆心的圆与轴相切,可知圆心的横坐标即为圆的半径,且同时与轴相切于椭圆的右焦点,则说明了PF垂直于x轴,且利用椭圆的通径长为则说明半径r=,那么点P的横坐标为C,故可知,因此答案为
点评:解决该试题的关键是能结合题目中圆于两坐标轴相切,则说明了点P的坐标,然后利用半径一样来得到a,b,c的关系式,进而求解s椭圆的离心率,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线轴上的截距为交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我们把离心率为黄金比的椭圆称为“优美椭圆”.设 为“优美椭圆”,F、A分别是左焦点和右顶点,B是短轴的一个端点,则 (  )
A.60° B.75°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
抛物线顶点在坐标原点,焦点与椭圆的右焦点重合,过点斜率为的直线与抛物线交于两点.

(Ⅰ)求抛物线的方程;
(Ⅱ)求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中 ,,以点为一个焦点作一个椭圆,使这个椭圆
的另一焦点在边上,且这个椭圆过两点,则这个椭圆的焦距长为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆)的两个焦点是),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线)与交于不同的两点,若线段的垂直平分线恒过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知椭圆的离心率为为椭圆的右焦点,两点在椭圆上,且,定点
(1)若时,有,求椭圆的方程;
(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.

查看答案和解析>>

同步练习册答案