精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.

(1)解:因为f(x)=-x3+ax2+b,
所以.…(1分)
当a=0时,f'(x)≤0,函数f(x)没有单调递增区间;…(2分)
当a>0时,令f'(x)>0,得
故f(x)的单调递增区间为;…(3分)
当a<0时,令f'(x)>0,得
故f(x)的单调递增区间为.…(4分)
综上所述,当a=0时,函数f(x)没有单调递增区间;
当a>0时,函数f(x)的单调递增区间为
当a<0时,函数f(x)的单调递增区间为.…(5分)
(2)解:,由(1)知,a∈[3,4]时,
f(x)的单调递增区间为
单调递减区间为(-∞,0)和.…(6分)
所以函数f(x)在x=0处取得极小值f(0)=b,…(7分)
函数f(x)在处取得极大值.…(8分)
由于对任意a∈[3,4],函数f(x)在R上都有三个零点,
所以…(10分)
解得.…(11分)
因为对任意a∈[3,4],恒成立,
所以.…(13分)
所以实数b的取值范围是(-4,0).…(14分)
分析:(1)因为f(x)=-x3+ax2+b,所以,由此根据a的取值范围进行分类讨论,能够求出函数f(x)的单调递增区间.
(2)由(1)知,a∈[3,4]时,f(x)的单调递增区间为,单调递减区间为(-∞,0)和.所以函数f(x)在x=0处取得极小值f(0)=b.由此利用对任意a∈[3,4],函数f(x)在R上都有三个零点,能求出实数b的取值范围.
点评:本题主要考查函数的性质、导数、函数零点、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案