A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是________.
分析:先列出(a,b)的所有的情况,将a,b的值代入B,判断出符合A∩B=B的所有情况,再利用古典概型的概率公式即可求出概率.
解答:由题意可知:(a,b)的所有的情况有
(1,1)(1,2),(1,3),(2,1),(2,2),
(2,3),(3,1),(3,2)(3,3)共有9种情况.
当(a,b)=(1,1)时,B={x∈R|x
2-x+1=0}=∅满足A∩B=B;
当(a,b)=(1,2)时,B={x∈R|x
2-x+2=0}=∅满足A∩B=B;
当(a,b)=(1,3)时,B={x∈R|x
2-x+3=0}=∅满足A∩B=B;
当(a,b)=(2,1)时,B={x∈R|x
2-2x+1=0}={1}满足A∩B=B;
当(a,b)=(2,2)时,B={x∈R|x
2-2x+2=0}=∅满足A∩B=B;
当(a,b)=(2,3)时,B={x∈R|x
2-2x+3=0}=∅满足A∩B=B;
当(a,b)=(3,1)时,B={x∈R|x
2-3x+1=0}不满足A∩B=B;
当(a,b)=(3,2)时,B={x∈R|x
2-3x+2=0}={1,2}满足A∩B=B;
当(a,b)=(3,3)时,B={x∈R|x
2-3x+3=0}=∅满足A∩B=B;
综上可知:满足A∩B=B的情况共有8个.
故A∩B=B的概率是
故答案为:
点评:本题为古典概型的求解,列举对基本事件是解决问题的关键,属基础题.