精英家教网 > 高中数学 > 题目详情

【题目】设抛物线C 的焦点为F,过F且斜率为的直线l交于AB两点,

(1)求的方程;

(2)求过点AB且与的准线相切的圆的方程.

【答案】(1);(2)

【解析】

的坐标可设直线的方程:联立抛物线方程及可以求出的值,从而得到答案

可得的中点坐标的垂直平分线方程为设所求圆的圆心坐标为,求出的值即可得到结果

(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).

A(x1,y1),B(x2,y2).

△=,故

所以

由题设知,解得k=–1(舍去),k=1.

因此l的方程为y=x–1.

(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为

,即

设所求圆的圆心坐标为(x0,y0),则

解得

因此所求圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中装有个大小相同的黑球和白球.已知从袋中任意摸出个球,至少得到个白球的概率是.

(1)求白球的个数;

(2)从袋中任意摸出个球,记得到白球的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数),

(1)求函数的单调区间;

(2)记

①当时,试判断的导函数的零点个数;

②求证:时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:对任意都有.

1)求证:函数是奇函数;

2)如果当时,有,试判断上的单调性,并用定义证明你的判断;

(3)在(2)的条件下,若对满足不等式的任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且时,总有成立.

a的值;

判断并证明函数的单调性;

上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a、b、c,且满足3asinC=4ccosA, =3.
(1)求△ABC的面积S;
(2)若c=1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测 株树苗的高度,经数据处理得到如图的频率分布直方图,起中最高的 株树苗高度的茎叶图如图所示,以这 株树苗的高度的频率估计整批树苗高度的概率.

(1)求这批树苗的高度高于 米的概率,并求图19-1中, 的值;

(2)若从这批树苗中随机选取 株,记 为高度在 的树苗数列,求 的分布列和数学期望.

(3)若变量 满足,则称变量 满足近似于正态分布 的概率分布.如果这批树苗的高度满足近似于正态分布 的概率分布,则认为这批树苗是合格的,将顺利获得签收;否则,公司将拒绝签收.试问,该批树苗能否被签收?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|2≤x≤5}B{x|m1≤x≤2m1}

(1)A∪BA,求实数m的取值范围;

(2)x∈Z时,求A的非空真子集的个数;

(3)x∈R时,若A∩B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案