精英家教网 > 高中数学 > 题目详情
2.已知三棱锥P-ABC中,AB=AC=2,∠BAC=90°,PA⊥平面ABC,且PA=2,求这个三棱锥的外接球的半径.

分析 将三棱锥补成长方体,它的对角线是其外接球的直径,从而即可求得这个三棱锥的外接球的半径.

解答 解:由PA⊥平面ABC,AB⊥AC,将三棱锥补成长方体,它的对角线是其外接球的直径,则
三棱锥外接球的直径为2$\sqrt{3}$,半径为$\sqrt{3}$.

点评 本题考查这个三棱锥的外接球的半径,考查学生分析解决问题的能力,得出将三棱锥补成长方体,它的对角线是其外接球的直径是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知x∈[-$\frac{π}{4}$,$\frac{π}{3}$],函数y=tan2x-tan(π-x)+1的值域是[$\frac{3}{4}$,4+$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线的倾斜角为α,则直线的斜率为tanα或不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.经过点P(-3,-5),且倾斜角为90°的直线方程是x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(-x),若g(x)=x2f(x),则不等式g(x)<g(1-3x)的解集是(  )
A.($\frac{1}{4}$,+∞)B.(-∞,$\frac{1}{4}$)C.(0,$\frac{1}{4}$)D.(-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x-1)=x2+2x-4,则f(-3)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知tanα=$\frac{3}{4}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),求:
(1)$\frac{sin(π+α)-sin(\frac{3π}{2}+α)}{cos(3π-α)+2}$;
(2)cos(-π-α)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.与圆C:(x-2)2+(y+1)2=4相切于点(4,-1)且半径为1的圆的方程是(x-5)2+(y+1)2=1或或(x-3)2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,已知A、B两点的距离为100海里,B在A的北偏东30°处,甲船自A以50海里/小时的速度向B航行,同时乙船自B以30海里/小时的速度沿方位角150°方向航行.问航行几小时两船之间的距离最短?

查看答案和解析>>

同步练习册答案