精英家教网 > 高中数学 > 题目详情
11.设向量$\overrightarrow{a}=(6,x)$,$\overrightarrow{b}$=(2,-2),且($\overrightarrow{a}-\overrightarrow{b}$)$⊥\overrightarrow{b}$,则x的值是(  )
A.4B.-4C.2D.-2

分析 求出向量$\overrightarrow{a}-\overrightarrow{b}$,然后利用向量的数量积为0,列出方程即可求出x的值.

解答 解:向量$\overrightarrow{a}=(6,x)$,$\overrightarrow{b}$=(2,-2),$\overrightarrow{a}-\overrightarrow{b}$=(4,x+2),($\overrightarrow{a}-\overrightarrow{b}$)$⊥\overrightarrow{b}$,
可得:8+(-2)(x+2)=0,解得x=2.
故选:C.

点评 本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.{(x,y)|xy>0}表示位于第一、三象限的点的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分别是DD1,AA1的中点.
(I)证明:EF∥平面B1C1CB;
(Ⅱ)求BC1与平面B1C1F所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xoy中,曲线C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2$\sqrt{3}$cosθ.
(I).求C2与C1交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2,点E是线段AB的中点,点M为线段D1C上的动点.,
(Ⅰ)当点M是D1C的中点时,求证直线BM∥平面D1DE;
(Ⅱ)若点M是靠近C点的四等分点,求直线EM与平面D1DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A、B、C所对的边分别为a、b、c,且a+b=6,c=2,cosC=$\frac{7}{9}$.
(Ⅰ)求a、b的值;
(Ⅱ)求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上函数f(x)满足f(1)=1,f′(x)<2,则满足f(x)>2x-1的x的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)判断平面BEG与平面ACH的位置关系.并证明你的结论;
(2)若正方体棱长为1,求三棱锥F-BEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+2(a-1)x在区间[4,+∞)上是增函数,则实数a的取值范围是(  )
A.a≥-3B.a≤-3C.a≤3D.a≤5

查看答案和解析>>

同步练习册答案