精英家教网 > 高中数学 > 题目详情
1.已知f(x)=$\left\{\begin{array}{l}{x^3},x≥0\\|lg(-x)|,x<0\end{array}$,则函数y=2f2(x)-3f(x)的零点个数为5.

分析 令y=2f2(x)-3f(x)=0,则f(x)=0,或f(x)=$\frac{3}{2}$,画出函数f(x)=$\left\{\begin{array}{l}{x^3},x≥0\\|lg(-x)|,x<0\end{array}$的图象,可得答案.

解答 解:令y=2f2(x)-3f(x)=0,
则f(x)=0,或f(x)=$\frac{3}{2}$,
函数f(x)=$\left\{\begin{array}{l}{x^3},x≥0\\|lg(-x)|,x<0\end{array}$的图象如下图所示:

由图可得:f(x)=0有2个根,或f(x)=$\frac{3}{2}$有3个根,
故函数y=2f2(x)-3f(x)的零点个数为5个,
故答案为:5

点评 本题考查的知识点是函数的零点,数形结合思想,分段函数的应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,AB⊥BC,AB1⊥平面ABC,且AB=BC=AB1=2.
(Ⅰ)证明:平面C1CBB1⊥平面A1ABB1
(Ⅱ)若点P为A1C1的中点,求直线BP与平面A1ACC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.与双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$共渐近线且过点$(2\sqrt{3},-3)$的双曲线方程$\frac{y^2}{{\frac{9}{4}}}-\frac{x^2}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$cos(\frac{3π}{14}-θ)=\frac{1}{3}$,则$sin(\frac{2π}{7}+θ)$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合{1,2,3}的子集个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=lg[f(x)-1]的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知p:x2-x-2<0,q:[x-(1-m)]•[x-(1+m)]<0(m>0),若p是q的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.长方体ABCD-A1B1C1D1中,若A1C与平面AB1D1相交于点M,则$\frac{{{A_1}M}}{{{A_1}C}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{x}^{2}}{lnx}$.
(I)求函数f(x)在区间[e${\;}^{\frac{1}{4}}$,e]上的最值;
(II)若g(x)=f(x)+$\frac{4{m}^{2}-4mx}{lnx}$(其中m为常数),且当0<m<$\frac{1}{2}$时,设函数g(x)的3个极值点为a,b,c,且a<b<c,证明:0<2a<b<1<c,并讨论函数g(x)的单调区间(用a,b,c表示单调区间)

查看答案和解析>>

同步练习册答案