精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若函数的图像上有与轴平行的切线,求参数的取值范围;

2)若函数处取得极值,且时,恒成立,求参数的取值范围.

【答案】(1)

(2).

【解析】

(1)对函数求导,由题意可知,当导函数等于零时,方程有实数解,求出参数的取值范围;

(2)函数处取得极值,可以求出的值,这样函数的单调性就确定了,可以求出时的最大值,恒成立,只要满足,即可,这样可以求出参数的取值范围.

(1),依题意知,方程有实根,

所以,得. 即参数的取值范围为

(2)由函数处取得极值,知是方程的一个根,所以,方程的另一个根为.

因此,当时,

时,.

所以]和上为增函数,在上为减函数,

有极大值.

极小值,又

∴当时,.

恒成立,∴.

.

即参数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在等腰直角中,,点在线段.

(Ⅰ) ,求的长;

)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,下列命题正确的是

A.如果一个角的两边和另一角的两边分别平行,那么这两个角相等

B.两条异面直线所成的有的范围是

C.如果两个平行平面同时与第三个平面相交,那么它们的交线平行

D.如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,对称轴为坐标轴,椭圆与直线相切于点

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于两点( 不是长轴端点),且以为直径的圆过椭圆轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:

1)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并

预测公司20174月的市场占有率;

2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为/辆和1200/辆的两款车型可供选择,按规定每辆单车最

多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如右表:经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C ,过点的直线l的参数方程为: (t为参数),直线l与曲线C分别交于MN两点.

(1)写出曲线C的直角坐标方程和直线l的普通方程;

(2)|PM ||MN||PN|成等比数列,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有一企业2007年建厂并开始投资生产,年份代号为7,2008年年份代号为8,依次类推.经连续统计9年的收入情况如下表(经数据分析可用线性回归模型拟合的关系):

年份代号(

7

8

9

10

11

12

13

14

15

当年收入(千万元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求关于的线性回归方程

(Ⅱ)试预测2020年该企业的收入.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面平面 的中点.

1)求证: 平面

2)若 ,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为).

1)若直线l在两坐标轴上的截距相等,求直线l的方程;

2)若直线lx正半轴、射线)分别交于PQ两点,当a为何值时,的面积最小?

查看答案和解析>>

同步练习册答案