精英家教网 > 高中数学 > 题目详情
5.对于函数y=f(x)(x∈D),若同时满足下列条件:①f(x)在D内是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],那么y=f(x)叫做闭函数.
(1)判断函数f(x)=x2是否为闭函数,并说明理由;
(2)是否存在实数a,b使函数y=-x3+1是闭函数;
(3)若y=k+$\sqrt{x+2}$为闭函数,求实数k的取值范围.

分析 (1)根据f(x)在定义域R上不单调,即可得出结论.
(2)假设存在实数a,b使函数y=-x3+1是闭函数,根据函数的单调性列出方程组是否有解;
(3)根据闭函数的定义,进行验证即可得到结论.

解答 解:(1)∵f(x)=x2在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴f(x)=x2在定义域R上不满足条件①,
∴f(x)=x2不是闭函数.
(2)假设存在a,b使函数y=-x3+1是闭函数,
∵y=-x3+1是减函数,
∴$\left\{\begin{array}{l}{f(a)=b}\\{f(b)=a}\\{a<b}\end{array}\right.$,即$\left\{\begin{array}{l}{-{a}^{3}+1=b}\\{-{b}^{3}+1=a}\\{a<b}\end{array}\right.$,解得a=0,b=1.
∴存在实数a,b使函数y=-x3+1是闭函数;
(3)y=k+$\sqrt{x+2}$的定义域为[-2,+∞).
若y=k+$\sqrt{x+2}$为闭函数,则存在区间[a,b]⊆[-2,+∞),使f(x)在[a,b]上的值域为[a,b].
∵y=k+$\sqrt{x+2}$在定义域上是增函数,
∴$\left\{\begin{array}{l}{f(a)=a}\\{f(b)=b}\\{-2≤a<b}\end{array}\right.$,即方程f(x)=x在区间[-2,+∞)上有两不相等的实根.
∴k+$\sqrt{x+2}$=x在[-2,+∞)上有两个不相等的实数根.
令$\sqrt{x+2}$=t,则x=t2-2,
∴t2-2-t-k=0有两个不相等的非负根,
令g(t)=t2-t-k-2=(t-$\frac{1}{2}$)2-k-$\frac{9}{4}$,
则$\left\{\begin{array}{l}{g(0)≥0}\\{-k-\frac{9}{4}<0}\end{array}\right.$即$\left\{\begin{array}{l}{-k-2≥0}\\{-k-\frac{9}{4}<0}\end{array}\right.$,解得-$\frac{9}{4}$<k≤-2.

点评 本题主要考查与函数有关的新定义问题,考查学生的理解和应用能力,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-2n.
(1)设bn=an+2,求证:数列{bn}是等比数列,
(2)求证:${a_n}{a_{n+2}}≤{a_{n+1}}^2$
(3)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知{an}为等比数列,其前n项和为Sn,且${S_n}={2^n}+a$(n∈N*).
(1)求a的值及数列{an}的通项公式;
(2)设bn=log4an+1,设{bn}的前n项和Sn,求不等式2Sn≤5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a∈R,命题p:“?x∈[0,2],2x-4x+a≤0均成立”,命题q:“函数f(x)=ln(x2+ax+1)定义域为R”,
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\sqrt{2-x}$+$\sqrt{x}$的定义域为(  )
A.(2,+∞)B.(-∞,0)C.(0,2)D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知P:|$\frac{1-a}{3}$|<2,q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B≠∅,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC和△DBE中,$\frac{AB}{DB}=\frac{BC}{BE}=\frac{AC}{DE}=\frac{5}{3}$,若△ABC与△DBE的周长之差为10cm,则△ABC的周长为25cm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉食为主)
(1)根据以上数据完成下列2×2列联表:
 主食蔬菜 主食肉类合计
50岁以下   
50岁以上   
合计   
(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.
P(K2≥k00.0500.0100.001
k03.8416.63510.828
附表:
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)${\;}_{\;}{0.064^{{-_{\;}}\frac{1}{3}}}-{({-\frac{4}{5}})^0}+{0.01^{\frac{1}{2}}}$
(Ⅱ)${\;}_{\;}2lg2+3lg5+lg\frac{1}{5}$.

查看答案和解析>>

同步练习册答案