精英家教网 > 高中数学 > 题目详情
18.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(-1<ξ<3)=(  )
A.0.683B.0.853C.0.954D.0.977

分析 根据随机变量ξ服从正态分布,知正态曲线的对称轴是x=1,且P(ξ>3)=0.023,依据正态分布对称性,即可求得答案.

解答 解:随机变量ξ服从正态分布N(1,1),
∴曲线关于x=1对称,
∵P(ξ<3)=0.977,∴P(ξ>3)=0.023,
∴P(-1≤ξ≤3)=1-2P(ξ>3)=1-0.046=0.954.
故选:C.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6
(1)求∠BAC的大小;
(2)若E在AC上,且AC=3AE.已知△ABC的面积为15,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的面积为$\frac{{\sqrt{3}}}{2}$,AC=2,∠BAC=$\frac{π}{3}$,则∠ACB=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a>0,函数f(x)=cosx(2asinx-cosx)+sin2x的最大值为2.
(1)求函数f(x)的单调递减区间;
(2)设△ABC三内角A,B,C所对边分别为a,b,c且$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}-{c}^{2}}$=$\frac{c}{2a-c}$,求f(x)在[B,$\frac{π}{2}}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=($\frac{1}{3}$)x
(1)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值g(a);
(2)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式$\frac{2x-1}{x-2}$≥1的解集为{x|x>2或x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1坐标原点为点O,有顶点坐标为(2,0),离心率e=$\frac{{\sqrt{3}}}{2}$,过椭圆右焦点倾斜角为30°的直线交椭圆与点A,B两点.
(1)求椭圆的方程.
(2)求三角形OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=cosx-lnx,实数a,b,c满足f(a)f(b)f(c)<0(0<a<b<c<π),若实数x0是f(x)=0的根,那么下列不等式中不可能成立的是(  )
A.x0<cB.x0>cC.x0<bD.x0>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,要在山坡上A、B两处测量与地面垂直的铁塔CD的高,由A、B两处测得塔顶C的仰角分别为60°和45°,AB长为40m,斜坡与水平面成30°角,则铁塔CD的高为$\frac{40\sqrt{3}}{3}$m.

查看答案和解析>>

同步练习册答案