精英家教网 > 高中数学 > 题目详情
设抛物线C:y2=4x,F为C的焦点,过F的直线L与C相交于A、B两点.
(1)设L的斜率为2,求|AB|的大小;
(2)求证:
OA
OB
是一个定值.
分析:(1)由题意可得直线L的方程,与抛物线方程联立并消去y得到关于x的一元二次方程,利用根与系数的关系、弦长公式即可得出;
(2)设直线L的方程为x=ky+1,与抛物线方程联立并消去x得到关于y的一元二次方程,利用根与系数的关系、数量积运算即可得出.
解答:解:(1)依题意得F(1,0),∴直线L的方程为y=2(x-1),
设直线L与抛物线的交点A(x1,y1),B(x2,y2),
联立
y=2(x-1)
y2=4x
消去y整理得x2-3x+1=0,
∴x1+x2=3,x1x2=1.
法一:|AB|=
1+k2
|x1-x2|
=
1+k2
(x1+x2)2-4x1x2
=
5
32-4•1
=5

法二:|AB|=|AF|+|BF|=x1+x2+p=3+2=5.
(2)证明:设直线L的方程为x=ky+1,
设直线L与抛物线的交点A(x1,y1),B(x2,y2),
x=ky+1
y2=4x
消去x整理得y2-4ky-4=0.
∴y1+y2=4k,y1y2=-4,
OA
OB
═(x1,y1)•(x2,y2
=x1x2+y1y2=(ky1+1)(ky2+1)+y1y2
=k2y1y2+k(y1+y2)+1+y1y2
=-4k2+4k2+1-4=-3.
OA
OB
是一个定值为-3.
点评:熟练掌握直线与抛物线的相交问题转化为与抛物线方程联立得到一元二次方程、根与系数的关系、弦长公式数量积计算公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=4(x-1),椭圆C1的左焦点及左准线与抛物线C的焦点F和准线l分别重合.
(1)设B是椭圆C1短轴的一个端点,线段BF的中点为P,求点P的轨迹C2的方程;
(2)如果直线x+y=m与曲线C2相交于不同两点M、N,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点到准线的距离是2.
(Ⅰ)求此抛物线方程;
(Ⅱ)设点A,B在此抛物线上,点F为此抛物线的焦点,且
FB
AF
,若λ∈[4,9],求直线AB在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=16x的焦点为F,过点Q(-4,0)的直线l与抛物线C相交于A,B两点,若|QA|=2|QB|,则直线l的斜率k=
±
2
2
3
±
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于A(x1,y1),B(x2,y2)两点,且y1y2=-4.
(1)求抛物线C的方程;
(2)若直线2x+3y=0平分线段AB,求直线l的倾斜角.
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k0,k1,k2.求证:当k0=1时,k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求抛物线C的方程;
(2)若
OE
=2(
OA
+
OB
)
(O为坐标原点),且点E在抛物线C上,求直线l倾斜角;
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k0,k1,k2.求证:当k0为定值时,k1+k2也为定值.

查看答案和解析>>

同步练习册答案