精英家教网 > 高中数学 > 题目详情
2.已知非空集合S={x|-$\frac{1}{2}$≤x≤m}满足:当x∈S时,有x2∈S,则实数m的取值范围是$\frac{1}{4}$≤m≤1.

分析 由题意可得m≥-$\frac{1}{2}$,再结合当x∈S时,有x2∈S,从而求m.

解答 解:∵集合S={x|-$\frac{1}{2}$≤x≤m}是非空集合,
∴m≥-$\frac{1}{2}$,
又∵当x∈S时,有x2∈S,
∴m2≤m且m≥$(-\frac{1}{2})^{2}$=$\frac{1}{4}$,
∴$\frac{1}{4}$≤m≤1.
故答案为:$\frac{1}{4}$≤m≤1.

点评 本题考查了集合的化简与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从右向左的第3个数为$\frac{{{n^2}+n-4}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.I5.函数f(x)在区间(2.5755,2.5769)上有一个零点,现研究这个零点的近似值;
(1)如果耍精确到0.01,那么这个近似解为2.58;
(2)如果f(2.5755)>0,f(2.5769)<0,f(2.5762)>0,并给定精确度0.001,那么这个近似解为2.576.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2为其左、右焦点,P是椭圆C上一点,PF2⊥x轴,且sin∠PF1F2=$\frac{3}{5}$.
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)过焦点F2的直线l与椭圆C相交于点M、N,若△F1MN面积的最大值为6,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.试求下列各正弦波的周期、频率和初相角.
(1)3sin314t;
(2)6cos(100πt-45°).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设Sn是等比数列{an}的前n项和,an>0,若S6-2S3=5,则S9-S6的最小值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b)的两个焦点F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=2,|PF2|=4,则椭圆C的方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(3π-α)=-2sin($\frac{π}{2}$+α),则sinα•cosα等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若两条平行线l1、l2的方程分别是3x+4y+m=0,3mx+8y-4=0,记l1、l2之间的距离为d,则m,d分别为2;$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案