精英家教网 > 高中数学 > 题目详情
观察下列等式:
sinα
cosα
=tanα

sinα+sin3α
cosα+cos3α
=tan2α

sinα+sin3α+sin5α
cosα+cos3α+cos5α
=tan3α


归纳得
sinα+sin3α+sin5α+…+sin(2n-1)α
cosα+cos3α+cos5α+…+cos(2n-1)α
=
tan(nα)
tan(nα)
分析:根据所给等式,可以发现:左边分子、分母角的系数构成以1为首项,2为公差,项数为n的等差数列,分子为正弦的和,分母为余弦的和,右边则为nα的正切值,故可得结论.
解答:解:由等式:
sinα
cosα
=tanα

sinα+sin3α
cosα+cos3α
=tan2α

sinα+sin3α+sin5α
cosα+cos3α+cos5α
=tan3α


可知其规律为:左边分子、分母角的系数构成以1为首项,2为公差,项数为n的等差数列,分子为正弦的和,分母为余弦的和,右边则为nα的正切值,由此可知
sinα+sin3α+sin5α+…+sin(2n-1)α
cosα+cos3α+cos5α+…+cos(2n-1)α
=tan(nα)
故答案为:tan(nα)
点评:本题是一个阅读题目,通过阅读找出题目隐含条件,总结归纳其规律,从而得出一般性的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察下列各等式:
 sin220°+cos250°+sin20°cos50°=
3
4
sin215°+cos245°+sin15°cos45°=
3
4

sin2120°+cos2150°+sin120°c0s150°=
3
4
,根据其共同特点,写出能反映一般规律的等式
sin2α+cos2(α+30°)+sinα°cos(α+30°)=
3
4
sin2α+cos2(α+30°)+sinα°cos(α+30°)=
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列各等式:sin2300+cos2600+sin300cos600=
3
4
sin2200+cos2500+sin200cos500=
3
4
sin2150+cos2450+sin150cos450=
3
4

分析上述各等式的共同点,请你写出能反映一般规律的等式为
sin2α+cos2(α+300)+sinαcos(α+300)=
3
4
sin2α+cos2(α+300)+sinαcos(α+300)=
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列各等式:sin220°+cos250°+sin20°cos50°=
3
4
,sin215°+cos245°+sin15°cos45°=
3
4
,sin2120°+cos2150°+sin120°cos150°=
3
4
,根据其共同特点,写出能反映一般规律的等式
sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4
sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4

查看答案和解析>>

同步练习册答案