精英家教网 > 高中数学 > 题目详情
已知函数y=
|x2-1|x+1
的图象与函数y=kx+2的图象恰有两个交点,则实数k的取值范围是
 
分析:利用零点分段法化简函数的解析式,并画出函数的图象,根据直线y=kx+2过定点A(0,2),数形结合可得满足条件的实数k的取值范围
解答:解:精英家教网函数y=
|x2-1|
x+1
=
|(x+1)(x-1)|
x+1
=
x-1,x>1或x<-1
1-x,-1<x≤1

直线y=kx+2过定点A(0,2),
取B(-1,-2),kAB=4,
根据图象可知要使两个函数的交点个数有两个,
则直线斜率满足0<k<4且k≠1.
故答案为:0<k<4且k≠1
点评:本题考查的知识点是函数的零点与方程根的关系,其中画出函数的图象,并利用图象分析出满足条件时参数的范围是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知函数y=x2+2x-3,分别求它在下列区间上的值域.
(1)x∈R;
(2)x∈[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知函数y=-x2+4x-2,若x∈(3,5),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知函数y=-x2+4x-2
(1)若x∈[0,5],求该函数的单调增区间;
(2)若x∈[0,3],求该函数的最大值.最小值;
(3)若x∈(3,5),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-2x+9分别求下列条件下的值域
(1)定义域是{x|3<x≤8};
(2)定义域是{x|-3<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-x-4的定义域为[m,n],值域为[-
17
4
,-4]
,则m+n的取值范围为(  )

查看答案和解析>>

同步练习册答案