【题目】学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.
(1)分别计算这10名同学中,男女生测试的平均成绩;
(2)若这10名同学中,男生和女生的国学素养测试成绩的标准差分别为S1,S2,试比较S1与S2的大小(不必计算,只需直接写出结果);
(3)规定成绩大于等于75分为优良,从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.
【答案】(1)男生73.75;女生76;(2) S1<S2.(3)
【解析】
(1)利用平均数的计算公式,分别计算出男生女生的平均成绩.(2)由于男生成绩比较集中,女生成绩比较分散,故.(3)利用列举法列举出所有的基本事件总数,从中得出两名同学的国学素养测试成绩均为优良的事件总数,根据古典概型概率计算公式计算出所求概率.
(1)由茎叶图得男生测试的平均成绩为:
=(64+76+77+78)=73.75,
女生测试的平均成绩为:=(56+79+76+70+88+87)=76.
(2)由茎叶图观察得S1<S2.
(3)设“两名学生的成绩均这优良”为事件A,
男生按成绩由低到高依次为64,76,77,78,
女生按成绩由低到高依次为56,70,76,79,87,88,
则从10名学生中随机选取一男一女两名同学共有24种方取法:
{64,56},{64,70},{64,76},{64,79},{64,87},{64,88},
{76,56},{76,70},{76,76},{76,79},{76,87},{76,88},
{77,56},{77,70},{77,76},{77,79},{77,87},{77,88},
{78,56},{78,70},{78,76},{78,79},{78,87},{78,88},
成绩大于等于75分为优良,
∴其中两名均为优良的取法有12种取法,分别为:
{76,76},{76,79},{76,87},{76,88},{77,76},{77,79},
{77,87},{77,88},{78,76},{78,79},{78,87},{78,88},
则这两名同学的国学素养测试成绩均为优良的概率
科目:高中数学 来源: 题型:
【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分
布直方图:
(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记 1分,否则记0分.求该运动员得1分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.
(1)求乙离子残留百分比直方图中的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差 | 9 | 10 | 11 | 8 | 12 |
发芽数(颗) | 38 | 30 | 24 | 41 | 17 |
利用散点图,可知线性相关。
(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;
(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.
(公式:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.
(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(Ⅰ) 随机选取1件产品,求能够通过检测的概率;
(Ⅱ)随机选取3件产品,其中一等品的件数记为,求的分布列;
(Ⅲ)随机选取3件产品,求这三件产品都不能通过检测的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com