【题目】长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点.求异面直线A1E与GF所成角的大小.
【答案】90°
【解析】
连接B1G,EG,B1F,CF,证明∠B1GF(或其补角)就是异面直线A1E与GF所成的角,再解三角形求出∠B1GF=90°.
连接B1G,EG,B1F,CF.
∵E、G是棱DD1、CC1的中点,
∴A1B1∥EG,A1B1=EG.
∴四边形A1B1GE是平行四边形.
∴B1G∥A1E.
∴∠B1GF(或其补角)就是异面直线A1E与GF所成的角.
在Rt△B1C1G中,B1C1=AD=1,C1G=AA1=1,
∴B1G=.
在Rt△FBC中,BC=BF=1,
∴FC=.
在Rt△FCG中,CF=,CG=1,
∴FG=.
在Rt△B1BF中,BF=1,B1B=2,
∴B1F=,在△B1FG中,B1G2+FG2=B1F2,
∴∠B1GF=90°.
因此异面直线A1E与GF所成的角为90°.
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列{an}的前n项和为Sn , 且满足2 =an+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=(an+1)2 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 若 (n∈N*),则称{an}是“紧密数列”;
(1)若a1=1, ,a3=x,a4=4,求x的取值范围;
(2)若{an}为等差数列,首项a1 , 公差d,且0<d≤a1 , 判断{an}是否为“紧密数列”;
(3)设数列{an}是公比为q的等比数列,若数列{an}与{Sn}都是“紧密数列”,求q的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE= ,BC= ,四棱锥F﹣ABED的体积为2,点F在平面ABED内的正投影为G,且G在AE上,点M是在线段CF上,且CM= CF.
(Ⅰ)证明:直线GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设M、N、T是椭圆 上三个点,M、N在直线x=8上的摄影分别为M1、N1 .
(Ⅰ)若直线MN过原点O,直线MT、NT斜率分别为k1 , k2 , 求证k1k2为定值.
(Ⅱ)若M、N不是椭圆长轴的端点,点L坐标为(3,0),△M1N1L与△MNL面积之比为5,求MN中点K的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,若椭圆与圆:相交于M,N两点,且圆E在椭圆内的弧长为.
(1)求椭圆的方程;
(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为 (α为参数),将曲线C1上所有点的横坐标缩短为原来的 ,纵坐标缩短为原来的 ,得到曲线C2 , 在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为4ρsin(θ+ )+ =0.
(1)求曲线C2的极坐标方程及直线l与曲线C2交点的极坐标;
(2)设点P为曲线C1上的任意一点,求点P到直线l的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直三棱柱ABC﹣A1B1C1的底面为正三角形,E,F分别是A1C1 , B1C1上的点,且满足A1E=EC1 , B1F=3FC1 .
(1)求证:平面AEF⊥平面BB1C1C;
(2)设直三棱柱ABC﹣A1B1C1的棱长均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com