精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式mx3-(2+数学公式)x2+4x+1,g(x)=mx+5
(Ⅰ)当m≥4时,求函数f(x)的单调递增区间;
(Ⅱ)是否存在m<0,使得对任意的x1,x2∈[2,3]都有f(x1)-g(x2)≤1?若存在,求m的取值范围;若不存在,请说明理由.

解:(Ⅰ)∵,∴f′(x)=mx2-(4+m)x+4=(mx-4)(x-1)
1)若m>4,则,此时都有
有f′(x)<0,∴f(x)的单调递增区间为和[[1,+∞);
2)若m=4,则f′(x)=4(x-1)2≥0,∴f(x)的单调递增区间为(-∞,+∞).
(Ⅱ)当m<0时,
∴当2≤x≤3时,都有f′(x)<0
∴此时f(x)在[2,3]上单调递减,∴
又g(x)=mx+5在[2,3]上单调递减,∴g(x)min=g(3)=3m+5
,解得,又m<0,
所以
分析:(1)利用导数研究函数的单调性.由于参数m决定了与1的大小关系,从而决定导数的正负,因此必须进行分类讨论,通过比较与1的大小,求出函数的单调增区间;
(2)先假设存在,将对任意的x1,x2∈[2,3]都有f(x1)-g(x2)≤1转化为f(x)max-f(x)min≤1,从而得到关于m的不等式,求出m的取值范围.
点评:利用导数研究含参函数的单调区间,关键是解不等式,因此要研究不等式所对应的方程根的大小,同时应注意对参数的讨论;研究是否存在问题,通常先假设存在,转化为封闭性问题,对于任意性的恒成立问题,一般应利用到函数的最值,而最值的确定又通常利用导数的方法解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案