精英家教网 > 高中数学 > 题目详情
3.设f(x)=ax2-(a+1)x+a.
(1)若a=2,解关于x的不等式f(x)>1;
(2)若对任意x>0,不等式f(x))>0恒成立,求实数a的取值范围.

分析 (1)将a=2代入,不等式f(x)=2x2-3x+2>1可化为:2x2-3x+1>0,解得答案;
(2)结合二次函数的图象和性质,分类讨论满足不等式f(x)>0恒成立时的实数a的取值范围,综合讨论结果,可得答案.

解答 解:(1)若a=2,则不等式f(x)=2x2-3x+2>1可化为:
2x2-3x+1>0,
解得:x∈(-∞,$\frac{1}{2}$)∪(1,+∞),
(2)当a<0时,函数图象是开口朝下的抛物线,对任意x>0,不等式f(x)>0不可能恒成立,
当a=0时,函数图象是从左到右下降的直线,不等式f(x)>0不可能恒成立,
当a>0时,函数图象是开口朝上,且以直线x=$\frac{a+1}{a}$>0为对称轴的抛物线,
若不等式f(x)>0恒成立,
则f($\frac{a+1}{a}$)=$\frac{4{a}^{2}-(a+1)^{2}}{4a}$>0,解得:a>1,或$-\frac{1}{3}$<a<0(舍去),
综上可得:a>1.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{m}$=(3sinx,cosx),$\overrightarrow{n}$=(-cosx,$\sqrt{3}$cosx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{\sqrt{3}}{2}$.
(I)求函数f(x)的最大值及取得最大值时x的值;
(Ⅱ)若方程f(x)=a在区间[0,$\frac{π}{2}$]上有两个不同的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知OA,OB,OC交于点O,$AD\underline{\underline{∥}}\frac{1}{2}OB$,E,F分别为BC,OC的中点.求证:DE∥平面AOC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线l1:6x+my-1=0与直线l2:2x-y+1=0平行,则m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列式子中,正确的是(  )
A.-1+(-1)=2B.$\frac{1}{2}$+$\frac{1}{3}$=$\frac{1}{5}$
C.23•2n-1=23n-3D.$\frac{1}{101}$+$\frac{1}{202}$+$\frac{1}{303}$+$\frac{1}{606}$=$\frac{2}{101}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1,动直线l:y=x+m.问:
(1)m为何值时,l与C相交;
(2)若l与C相交于A,B两点,且OA⊥OB,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15. 已知正方体ABCD-A1B1C1D1的棱长为2a,E为CC1的中点,F为B1C1的中点.
(1)求证;BD⊥A1E;
(2)求证:平面A1BD⊥平面EBD;
(3)求证:平面A1BF⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$f(x)=\frac{{{e^{2x}}-1}}{e^x}$的图象关于(  )
A.原点对称B.y轴对称C.x轴对称D.关于x=1对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.$\int_0^1{3{x^2}dx-\int_0^1{\sqrt{1-{x^2}}dx=}}$(  )
A.$1-\frac{π}{4}$B.2C.$1+\frac{π}{4}$D.π-1

查看答案和解析>>

同步练习册答案