精英家教网 > 高中数学 > 题目详情
2.在△ABC中,三边分别为a=2,b=3,c=4,求△ABC的面积.

分析 先利用余弦定理计算cosB,再利用正弦定理求出sinB,利用S△ABC=$\frac{1}{2}$acsinB,可得结论.

解答 解:∵△ABC中,已知a=2,b=3,c=4,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{4+9-16}{12}$=-$\frac{1}{4}$,
∴sinB=$\frac{\sqrt{15}}{4}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{3\sqrt{15}}{4}$.

点评 本题主要考查了三角形面积公式、余弦定理在解决三角形问题中的应用,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,点F为右焦点,直线1与圆x2+y2=3相切于点Q,且Q位于y轴的右侧,直线l交椭圆于相异两点A,B,如图所示,则|AF|+|AQ|的值为(  )
A.4B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设A、B、C、D分别表示下列角的取值范围:
(1)A是直线倾斜角的取值范围;
(2)a是锐角;
(3)c是直线与平面所成角的取值范围;
(4)D是两异面直线所成角的取值范围,
用“⊆”把集合A、B、C、D连接起来得到B⊆D⊆C⊆A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$+log2(2x+4)的定义域为(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过点A(0,1)且斜率为k的直线l与圆(x-2)2+(y-3)2=1交于M(x1,y1),N(x2,y2)两点.
(1)求k的取值范围:
(2)若x1x2+y1y2=12,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合M={y|y=3x},M={y|y=x${\;}^{\frac{2}{3}}$},则M∩N=(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.使奇函数f(x)=sin(2x+α)在[-$\frac{π}{4}$,0]上为减函数的α的值可以是(  )
A.0B.$\frac{π}{2}$C.πD.$\frac{3}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Sn是等比数列{an}的前n项和,a1=30,8S6=9S3,设Tn=a1a2a3…an,则使Tn取得最大值的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等比数列{an}中,a1=-3,a2=-6,则a4的值为(  )
A.-24B.24C.±24D.-12

查看答案和解析>>

同步练习册答案